This work discusses an optical system with brightness amplification—a laser monitor, as well as the system's application for real-time imaging of the surface of metal nanopowders during high-temperature combustion. The advantage of the laser monitor is its combination of microscopic magnification, laser backlighting, and narrow-band filtering, which, together with high-speed video recording, makes it possible to visualize the nanopowder surface through the intense background lighting produced by a high-temperature burning sample. We used two laser-monitor schemes with short and long focal lengths to study the dynamics of the combustion process at different spatial resolutions. For compounds whose combustion is accompanied by intense scattering of the combustion products, we recommend using the laser monitor with increased monitoring distance via a mirror-imaging scheme. This proposed technique allows real-time monitoring of the high-temperature-combustion processes accompanied by intensive lighting and product scattering at a distance of 50 cm from the optical system. Both systems allow quantitative characterization of the combustion process by registering the average output of the brightness amplifier together with the overall brightness of glowing. The combustion of nanoAl + nanoFe and nanoAl + nanoFe + microAl powder mixtures was visualized using a laser monitor for the first time and compared with the combustion of aluminum nanopowder without additives.

1.
V. E.
Zarko
and
A. A.
Gromov
,
Energetic Nanomaterials: Synthesis, Characterization, and Application
(
Elsevier
,
Amsterdam
,
2016
).
2.
D.
Muthu Gnana Theresa Nathan
,
S.
Jacob Melvin Boby
,
P.
Basu
,
R.
Mahesh
,
S.
Harish
,
S.
Joseph
, and
P.
Sagayaraj
,
Appl. Surf. Sci.
449
,
474
(
2018
).
3.
W.-S.
Tan
,
V.
Bousquet
,
M.
Kauer
,
K.
Takahashi
, and
J.
Heffernan
,
Jpn. J. Appl. Phys.
48
,
072102
(
2009
).
4.
W. H.
Hunt
,
Int. J. Powder Metall.
36
,
50
(
2000
).
5.
A.
Wilmański
,
M.
Bućko
,
Z.
Pędzich
, and
J.
Szczerba
,
J. Mater. Sci. Chem. Eng.
2
,
26
(
2014
).
6.
D. S.
Sundaram
,
V.
Yang
, and
E.
Zarko
,
Combust. Expl. Shock. Waves
51
,
173
(
2015
).
7.
S. L.
Chung
and
C. H.
Lai
,
Key Eng. Mater.
521
,
101
(
2012
).
8.
R. J.
Jacob
,
B.
Wei
, and
M. R.
Zachariah
,
Combust. Flame
167
,
472
(
2016
).
10.
C.
Kong
,
D.
Yu
,
Q.
Yao
, and
S.
Li
,
Combust. Flame
165
,
11
(
2016
).
11.
A. G.
Korotkikh
,
O. G.
Glotov
,
V. A.
Arkhipov
,
V. E.
Zarko
, and
A. B.
Kiskin
,
Combust. Flame
178
,
195
(
2017
).
12.
R. J.
Jacob
,
K. J.
Hill
,
Y.
Yang
,
M. L.
Pantoya
, and
M. R.
Zachariah
,
Combust. Flame
205
,
33
(
2019
).
13.
K. B.
Plantier
,
M. L.
Pantoya
, and
A. E.
Gash
,
Combust. Flame
140
,
299
(
2005
).
14.
A. A.
Abdel-Hafez
,
M. W.
Brodt
,
J. R.
Carney
, and
J. M.
Lightstone
,
Rev. Sci. Instrum.
82
,
064101
(
2011
).
15.
J.
Sivan
and
Y.
Haas
,
Prop. Explos. Pyrotech.
40
,
755
(
2015
).
16.
F.
Saceleanu
,
M.
Idir
,
N.
Chaumeix
, and
J. Z.
Wen
,
Front. Chem.
6
,
465
(
2018
).
17.
K. L.
McNesby
,
B. E.
Homan
,
R. A.
Benjamin
,
V. M.
Boyle
,
J. M.
Densmore
, and
M. M.
Biss
,
Rev. Sci. Instrum.
87
,
051301
(
2016
).
18.
M. L.
Pantoya
and
J. J.
Granier
,
Prop. Explos. Pyrotech.
30
,
53
(
2005
).
19.
F. A.
Gubarev
,
M. S.
Klenovskii
,
L.
Li
,
A. V.
Mostovshchikov
, and
A. P.
Ilyin
,
Opt. Pura Apl.
51
,
1
(
2018
).
20.
L.
Li
,
A. P.
Ilyin
,
F. A.
Gubarev
,
A. V.
Mostovshchikov
, and
M. S.
Klenovskii
,
Ceram. Int.
44
,
19800
(
2018
).
21.
G. S.
Evtushenko
,
M. V.
Trigub
,
F. A.
Gubarev
,
T. G.
Evtushenko
,
S. N.
Torgaev
, and
D. V.
Shiyanov
,
Rev. Sci. Instrum.
85
,
033111
(
2014
).
22.
D. V.
Abramov
,
S. M.
Arakelian
,
A. F.
Galkin
,
I. I.
Klimovskii
,
A. O.
Kucherik
, and
V. G.
Prokoshev
,
Quant. Electron.
36
,
569
(
2006
).
23.
R. O.
Buzhinsky
,
V. V.
Savransky
,
K. I.
Zemskov
,
A. A.
Isaev
, and
O. I.
Buzhinsky
,
Plasma Phys. Rep.
36
,
1269
(
2010
).
24.
V. M.
Yermachenko
,
A. P.
Kuznetsov
,
V. N.
Petrovskiy
,
N. M.
Prokopova
,
A. P.
Streltsov
, and
S. A.
Uspenskiy
,
Laser Phys.
21
,
1530
(
2011
).
25.
J.
Manin
,
S. A.
Skeen
, and
L. M.
Pickett
,
Opt. Eng.
57
,
124105
(
2018
).
26.
P. W. W.
Fuller
,
Imaging Sci. J.
57
,
293
(
2009
).
27.
See https://www.phantomhighspeed.com/products for more information about Vision Research, Inc.
28.
C. E.
Little
,
Metal Vapor Lasers Physics, Engineering and Applications
(
John Wiley & Sons Ltd.
,
Chichester
,
1999
).
29.
M. A.
Kazaryan
,
V. M.
Batenin
,
V. V.
Buchanov
,
A. M.
Boichenko
,
I. I.
Klimovskii
, and
E. I.
Molodykh
,
High Brightness Metal Vapor Lasers: Physics and Applications
(
CRC Press
,
Boca Raton
,
FL
,
2017
).
30.
A. A.
Isaev
,
D. R.
Jones
,
C. E.
Little
,
G. G.
Petrash
,
C. G.
Whyte
, and
K. I.
Zemskov
,
IEEE J. Quant. Electron.
33
,
919
(
1997
).
31.
M. J.
Withford
,
D. J. W.
Brown
,
R. P.
Mildren
,
R. J.
Carman
,
G. D.
Marshall
, and
J. A.
Piper
,
Prog. Quant. Electron.
28
,
165
(
2004
).
32.
G. D.
Marshall
and
D. W.
Coutts
,
IEEE J. Quant. Electron.
49
,
711
(
2013
).
33.
A. N.
Soldatov
,
N. A.
Yudin
,
Y. P.
Polunin
, and
N. N.
Yudin
,
Atmos. Ocean. Opt.
31
,
424
(
2018
).
34.
D. N.
Astadzhov
,
N. K.
Vuchkov
,
K. I.
Zemskov
,
A. A.
Isaev
,
M. A.
Kazaryan
,
G. G.
Petrash
, and
N. V.
Sabotinov
,
Sov. J. Quant. Electron.
18
,
457
(
1988
).
35.
D.
Astadjov
,
L.
Stoychev
, and
N.
Sabotinov
,
Opt. Quant. Electron.
39
,
603
(
2007
).
36.
G. N.
Tiwari
,
P. K.
Shukla
,
R. K.
Mishra
,
V. K.
Shrivastava
,
R.
Khare
, and
S. V.
Nakhe
,
Opt. Commun.
338
,
322
(
2015
).
37.
V. A.
Dimaki
,
V. B.
Sukhanov
,
V. O.
Troitskii
, and
A. G.
Filonov
,
Instrum. Exp. Techniq.
55
,
696
(
2012
).
38.
F. A.
Gubarev
,
V. F.
Fedorov
,
K. V.
Fedorov
,
D. V.
Shiyanov
, and
G. S.
Evtushenko
,
Quant. Electron.
46
,
57
(
2016
).
39.
F. A.
Gubarev
,
L.
Li
,
M. S.
Klenovskii
, and
D. V.
Shiyanov
,
Appl. Phys. B Lasers Opt.
122
,
284
(
2016
).
40.
K. I.
Zemskov
,
A. A.
Isaev
,
M. A.
Kazaryan
, and
G. G.
Petrash
,
Sov. J. Quant. Electron.
4
,
5
(
1974
).
41.
Optical Systems with Brightness Amplifiers
, edited by
G. G.
Petrash
(
Nauka
,
Moscow
,
1991
).
42.
V. M.
Batenin
,
I. I.
Klimovsky
, and
L. A.
Selezneva
,
Sov. Phys. Dokl.
33
,
949
(
1988
).
43.
O. I.
Buzhinskij
,
N. N.
Vasiliev
,
A. I.
Moshkunov
,
L. A.
Slivitskaya
, and
A. A.
Slivitsky
,
Fusion Eng. Des.
60
,
141
(
2002
).
44.
O. I.
Buzhinskij
,
V. G.
Otroshchenko
,
A. A.
Slivitsky
, and
I. A.
Slivitskaya
,
Plasma Devices Oper.
11
,
155
(
2003
).
45.
K. K.
Strelov
and
I. D.
Kascheev
,
The Theoretical Basis of the Technology of Refractory Materials
(
Metallurgiya
,
Moscow
,
1996
).
46.
F. A.
Gubarev
,
M. S.
Klenovskii
, and
L.
Li
,
IOP Conf. Ser. Mater. Sci. Eng.
124
,
012016
(
2016
).
47.
S. V.
Zmanovsky
,
V. A.
Arkhipov
,
A. S.
Zhukov
,
E. A.
Kozlov
,
E. L.
Dyubenko
,
M. Y.
Evselevleev
, and
A. I.
Konovalenko
, Patent 2559080 RU, IPC B22 F9/08 (
2015
).
48.
P. F.
Pokhil
,
A. F.
Belyaev
,
Y. V.
Frolov
,
V. S.
Logachev
, and
A. I.
Korotkov
,
Combustion of Powdered Metals in Active Media
(
Nauka
,
Moscow
,
1972
).
You do not currently have access to this content.