Elastocaloric cooling holds promise for energy-efficient heat pumping near room temperature with low environmental impact. Its adoption is, however, impeded by disproportionally large sizes of actuators compared with the active material volume. Taking magnetocaloric cooling as the baseline, the value of no more than 10:1 actuator volume to active material volume should lead to both size- and cost-effective solutions that may potentially be competitive with vapor-compression devices. With the goal to establish performance metrics that can lead to informed actuator selection for specific regenerator requirements, we analyze a wide range of elastocaloric materials and actuator technologies to find the best matches. We find that actuation with magnetic shape memory alloys meets all requirements; however, this technology is currently in early developmental stages and such actuators are not widely commercially available. Another promising and easily accessible option is standard rotary electric motors in combination with rotary-to-linear transduction mechanisms. A theoretical analysis of two case studies of elastocaloric systems using rotary electric motors with a Scotch yoke mechanism demonstrates the usefulness of our approach. Actuator requirements are based on two different regenerator configurations: one starting from zero strain without any mechanical energy recovery and another with 2% pre-strain and mechanical energy recovery to reduce the power and torque required from the motor. Our results indicate that the 10:1 target actuator to active material volume ratio can be met and feasibly lowered further, demonstrating that the proposed method for selecting actuators makes compact and efficient elastocaloric systems possible.

1.
B.
Dean
,
J.
Dulac
,
T.
Morgan
, and
U.
Remme
,
The Future of Cooling
(
IEA
,
2018
).
2.
W.
Goetzler
,
R.
Zogg
,
J.
Young
, and
C.
Johnson
,
Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies
(U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Office,
2014
).
3.
S.
Qian
,
Y.
Geng
,
Y.
Wang
,
J.
Ling
,
Y.
Hwang
,
R.
Radermacher
,
I.
Takeuchi
, and
J.
Cui
,
Int. J. Refrig.
64
,
1
(
2016
).
4.
F.
Bruederlin
,
H.
Ossmer
,
F.
Wendler
,
S.
Miyazaki
, and
M.
Kohl
,
J. Phys. D Appl. Phys.
50
,
424003
(
2017
).
5.
M.
Schmidt
,
A.
Schütze
, and
S.
Seelecke
,
Int. J. Refrig.
54
,
88
(
2015
).
6.
J.
Tušek
,
K.
Engelbrecht
,
D.
Eriksen
,
S.
Dall’Olio
,
J.
Tušek
, and
N.
Pryds
,
Nat. Energy
1
,
16134
(
2016
).
7.
C.
Zimm
,
A.
Jastrab
,
A.
Sternberg
,
V.
Pecharsky
,
K.
Gschneidner
,
M.
Osborne
, and
I.
Anderson
,
Advances in Cryogenic Engineering
(
Springer US
,
1998
), pp.
1759
1766
.
8.
C.
Zimm
,
A.
Boeder
,
B.
Mueller
,
K.
Rule
, and
S. L.
Russek
,
MRS Bull.
43
,
274
(
2018
).
9.
D.
Eriksen
,
K.
Engelbrecht
,
C. R.
Haffenden Bahl
, and
R.
Bjørk
,
Sci. Technol. Built Environ.
22
,
527
(
2016
).
10.
A.
Greco
,
C.
Aprea
,
A.
Maiorino
, and
C.
Masselli
,
Int. J. Refrig.
106
,
66
(
2019
).
11.
S.
Qian
,
Y.
Geng
,
Y.
Wang
,
J.
Muehlbauer
,
J.
Ling
,
Y.
Hwang
,
R.
Radermacher
, and
I.
Takeuchi
,
Sci. Technol. Built Environ.
22
,
500
(
2016
).
12.
S.
Qian
,
Y.
Wang
,
L.
Yuan
, and
J.
Yu
,
Energy
182
,
881
(
2019
).
13.
M. F. A. J. E.
Huber
and
N. A.
Fleck
,
Proc. R. Soc. Lond. A
453
, 2185 (
1997
).
14.
A.
Czernuszewicz
,
L.
Griffith
,
J.
Slaughter
, and
V.
Pecharsky
,
Appl. Mater. Today
19
,
100557
(
2020
).
15.
J.
Tušek
,
A.
Žerovnik
,
M.
Čebron
,
M.
Brojan
,
B.
Žužek
,
K.
Engelbrecht
, and
A.
Cadelli
,
Acta Mater.
150
,
295
(
2018
).
16.
K.
Zhang
,
G.
Kang
, and
Q.
Sun
,
Scr. Mater.
159
,
62
(
2019
).
17.
F.
Beer
and
R.
Johnston
,
Mechanics of Materials
, 2nd ed. (
McGraw-Hill, Inc.
,
1992
).
18.
J.
Cui
,
Y.
Wu
,
J.
Muehlbauer
,
Y.
Hwang
,
R.
Radermacher
,
S.
Fackler
,
M.
Wuttig
, and
I.
Takeuchi
,
Appl. Phys. Lett.
101
,
073904
(
2012
).
19.
C.
Bechtold
,
C.
Chluba
,
R.
Lima de Miranda
, and
E.
Quandt
,
Appl. Phys. Lett.
101
,
091903
(
2012
).
20.
Y. W.
Daoyong Cong
,
W.
Xiong
,
A.
Planes
,
Y.
Ren
,
L.
Mañosa
,
P.
Cao
,
Z.
Nie
,
X.
Sun
,
Z.
Yang
, and
X.
Hong
,
Phys. Rev. Lett.
122
,
255703
(
2019
).
21.
Y. J.
Huang
,
Q. D.
Hu
,
N. M.
Bruno
,
J.-H.
Chen
,
I.
Karaman
,
J. H.
Ross
, and
J. G.
Li
,
Scr. Mater.
105
,
42
(
2015
).
22.
B.
Lu
,
P.
Zhang
,
Y.
Xu
,
W.
Sun
, and
J.
Liu
,
Mater. Lett.
148
,
110
(
2015
).
23.
R.
Millán-Solsona
,
E.
Stern-Taulats
,
E.
Vives
,
A.
Planes
,
J.
Sharma
,
A. K.
Nayak
,
K. G.
Suresh
, and
L.
Mañosa
,
Appl. Phys. Lett.
105
,
241901
(
2014
).
24.
Y.
Li
,
W.
Sun
,
D.
Zhao
,
H.
Xu
, and
J.
Liu
,
Scr. Mater.
130
,
278
(
2017
).
25.
G. J.
Pataky
,
E.
Ertekin
, and
H.
Sehitoglu
,
Acta Mater.
96
,
420
(
2015
).
26.
F.
Xiao
,
M.
Jin
,
J.
Liu
, and
X.
Jin
,
Acta Mater.
96
,
292
(
2015
).
27.
A.
Shen
,
D.
Zhao
,
W.
Sun
,
J.
Liu
, and
C.
Li
,
Scr. Mater.
127
,
1
(
2017
).
28.
S.
Qian
,
Y.
Geng
,
Y.
Wang
,
T. E.
Pillsbury
,
Y.
Hada
,
Y.
Yamaguchi
,
K.
Fujimoto
,
Y.
Hwang
,
R.
Radermacher
,
J.
Cui
,
Y.
Yuki
,
K.
Toyotake
, and
I.
Takeuchi
,
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
374
,
20150309
(
2016
).
29.
L.
Mañosa
,
S.
Jarque-Farnos
,
E.
Vives
, and
A.
Planes
,
Appl. Phys. Lett.
103
,
211904
(
2013
).
30.
F.
Xiao
,
T.
Fukuda
, and
T.
Kakeshita
,
Appl. Phys. Lett.
102
,
161914
(
2013
).
31.
Y.
Liu
,
I. C.
Infante
,
X.
Lou
,
L.
Bellaiche
,
J. F.
Scott
, and
B.
Dkhil
,
Adv. Mater.
26
,
6132
(
2014
).
32.
S.
Patel
,
A.
Chauhan
, and
R.
Vaish
,
Appl. Phys. Lett.
107
,
042902
(
2015
).
33.
A.
Chauhan
,
S.
Patel
, and
R.
Vaish
,
Acta Mater.
89
,
384
(
2015
).
34.
Z.
Xie
,
G.
Sebald
, and
D.
Guyomar
,
Appl. Phys. Lett.
108
,
041901
(
2016
).
35.
J.
Sirohi
and
I.
Chopra
,
J. Intell. Mater. Syst. Struct.
14
,
135
(
2003
).
36.
H. E.
Karaca
,
I.
Karaman
,
B.
Basaran
,
Y.
Ren
,
Y. I.
Chumlyakov
, and
H. J.
Maier
,
Adv. Funct. Mater.
19
,
983
(
2009
).
37.
L. J.
Love
,
E.
Lanke
, and
P.
Alles
,
Estimating the Impact (Energy, Emissions and Economics) of the U.S. Fluid Power Industry
(Oak Ridge National Laboratory,
2012
).
38.
G. A.
McCoy
and
J. G.
Douglass
,
Premium Efficiency Motor Selection and Application Guide a Handbook for Industry
(U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office,
2014
).
39.
Portescap Motor
, See https://www.portescap.com/products/brushless-dc-motor/22ect35-ultra-ec-slotless-brushless-dc-motor for information about motors and gearheads used in examples.
40.
T.
Hemsel
,
M.
Mracek
,
J.
Twiefel
, and
P.
Vasiljev
,
Ultrasonics
44
,
e591
(
2006
).
41.
T.
Ueno
,
Z. G.
Zhang
, and
T.
Higuchi
,
Adv. Robot.
24
,
1423
(
2010
).
42.
M.
Pramoth Kumar
,
K.
Akash
, and
M.
Venkatesan
,
IOP Conf. Ser. Mater. Sci. Eng.
149
,
012221
(
2016
).
43.
V.
Arakelian
,
J.-P.
Le Baron
, and
M.
Mkrtchyan
,
Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn.
230
,
379
(
2016
).
44.
S.
Qian
,
J.
Ling
,
Y.
Hwang
,
R.
Radermacher
, and
I.
Takeuchi
,
Int. J. Refrig.
56
,
65
(
2015
).
45.
F.
Auricchio
and
R. L.
Taylor
,
Comput. Methods Appl. Mech. Eng.
143
,
175
(
1997
).
46.
H.
Hou
,
P.
Finkel
,
M.
Staruch
,
J.
Cui
, and
I.
Takeuchi
,
Nat. Commun.
9
,
4075
(
2018
).

Supplementary Material

You do not currently have access to this content.