We report on the large anisotropic magnetocaloric effect of PrAlSi, a ferromagnetic semimetal of current interest with a probable topologically nontrivial electronic structure. The maximum magnetic entropy change amounts to ΔSM=22.6J/kgK near the Curie temperature TC=17.8K under a magnetic field change of μ0ΔH=5T along the magnetic easy c axis. A highly relevant feature is the small crystalline electric field splitting of the Pr3+ (J=4) multiplet, which appears to be comparable with the effective exchange interaction in the magnetic ordering. This leads to the full saturation moment of the Pr3+ ion in small fields and an accumulation of magnetic entropy in the vicinity of the magnetic ordering. The weakly first-order nature of the ferromagnetic transition and the subsequent reentrant spin-glass transitions below TC are features further enhancing the magnetocaloric effect. Given the strong magnetic anisotropy, a large rotating magnetocaloric effect becomes achievable in this material.

1.
A. M.
Tishin
and
Y. I.
Spichkin
,
The Magnetocaloric Effect and Its Applications
(
Institute of Physics Publishing
,
Bristol
,
2003
).
2.
K. A.
Gschneidner
, Jr.,
V. K.
Pecharsky
, and
A. O.
Tsokol
,
Rep. Prog. Phys.
68
,
1479
(
2005
).
3.
V.
Franco
,
J. S.
Blâzquez
,
J. J.
Ipus
,
J. Y.
Law
,
L. M.
Moreno-Ramîrez
, and
A.
Conde
,
Prog. Mater. Sci.
93
,
112
(
2018
).
4.
V. K.
Pecharsky
and
K. A.
Gscheidner
, Jr.,
Phys. Rev. Lett.
78
,
4494
(
1997
).
5.
B.
Lüthi
,
J. Magn. Magn. Mater.
15–18
,
1
(
1980
).
6.
G.
Chang
et al.,
Phys. Rev. B
97
,
041104(R)
(
2018
).
7.
M.
Lyu
,
J.
Xiang
et al., arXiv:2001.05398 (2020).
8.
M.
Balli
,
S.
Jandl
,
P.
Fournier
, and
M. M.
Gospodinov
,
Appl. Phys. Lett.
104
,
232402
(
2014
).
9.
A. L.
Lima Sharma
,
S.
Bobev
, and
J. L.
Sarrao
,
J. Magn. Magn. Mater.
312
,
400
(
2007
).
10.
S.
Bobev
et al.,
J. Solid State Chem.
178
,
2091
(
2005
).
11.
Q. Y.
Dong
,
J.
Chen
,
J.
Shen
,
J. R.
Sun
, and
B. G.
Shen
,
Appl. Phys. Lett.
99
,
132504
(
2011
).
12.
L.
Li
,
T.
Namiki
,
D.
Huo
,
Z.
Qian
, and
K.
Nishimura
,
Appl. Phys. Lett.
103
,
222405
(
2013
).
13.
Y.
Liu
and
C.
Petrovic
,
Phys. Rev. Mater.
3
,
014001
(
2019
).
14.
15.
E. S. R.
Gopal
,
Specific Heats at Low Temperatures
(
Plenum
,
New York
,
1966
).
16.
L.
Li
and
K.
Nishimura
,
J. Appl. Phys.
106
,
023903
(
2009
).
17.
A. O.
Pecharsky
,
Yu.
Mozharivskyj
,
K. W.
Dennis
,
K. A.
Gschneidner
, Jr.,
R. W.
McCallum
,
G. J.
Miller
, and
V. K.
Pecharsky
,
Phys. Rev. B
68
,
134452
(
2003
).
18.
F.
Wang
,
F.
Yuan
,
J.
Wang
,
T.
Feng
, and
G.
Hu
,
J. Alloys Compd.
592
,
63
(
2014
).
19.
P. K.
Das
,
A.
Bhattacharyya
,
R.
Kulkarni
,
S. K.
Dhar
, and
A.
Thamizhavel
,
Phys. Rev. B
89
,
134418
(
2014
).
20.
A. M. G.
Carvalho
,
J. C. P.
Campoy
,
A. A.
Coelho
,
E. J. R.
Plaza
,
S.
Gama
, and
P. J.
von Ranke
,
J. Appl. Phys.
97
,
083905
(
2005
).
21.
G.
Tian
,
H.
Du
,
Y.
Zhang
,
Y.
Xia
, and
C.
Wang
,
J. Alloys Compd.
496
,
517
(
2010
).
22.
P. J.
von Ranke
,
V. K.
Pecharsky
,
K. A.
Gschneidner
, Jr., and
B. J.
Korte
,
Phys. Rev. B
58
,
14436
(
1998
).
23.
V.
Tkáĉ
et al.,
Phys. Rev. B
92
,
024406
(
2015
).
24.
P. J.
von Ranke
,
E. P.
Nóbrega
,
I. G.
de Oliveira
,
A. M.
Gomes
, and
R. S.
Sarthour
,
Phys. Rev. B
63
,
184406
(
2001
).
25.
Q.
Shi
,
X.
Zhang
,
E.
Yang
,
J.
Yan
,
X.
Yu
,
C.
Sun
,
S.
Li
, and
Z.
Chen
,
Results Phys.
11
,
1004
(
2018
).
26.
A.
Ali
,
Sharma
, and
Y.
Singh
,
J. Appl. Phys.
126
,
155107
(
2019
).
You do not currently have access to this content.