The multicaloric effect is described by a temperature or entropy change of a material triggered by external stimuli applied or removed simultaneously or sequentially. The prerequisite for this is a material exhibiting multiple ferroic states. However, direct measurements of the effect are rarely reported. Now, for this reason, we built a measurement device allowing to determine the adiabatic temperature change in pulsed magnetic fields and, simultaneously, under the influence of a uniaxial load. We selected the all-d-metal Heusler alloy Ni–Mn–Ti–Co for our first test because of its enhanced mechanical properties and enormous magneto- and elastocaloric effects. Ni–Mn–Ti–Co was exposed to pulsed magnetic fields up to 10 T and uniaxial stresses up to 80 MPa, and the corresponding adiabatic temperature changes were measured. With our new experimental tool, we are able to better understand multicaloric materials and determine their cross-coupling responses to different stimuli.

1.
O.
Gutfleisch
,
T.
Gottschall
,
M.
Fries
,
D.
Benke
,
I.
Radulov
,
K. P.
Skokov
,
H.
Wende
,
M.
Gruner
,
M.
Acet
,
P.
Entel
, and
M.
Farle
, “
Mastering hysteresis in magnetocaloric materials
,”
Philos. Trans. R. Soc. A
374
,
20150308
(
2016
).
2.
J.
Lyubina
, “
Magnetocaloric materials for energy efficient cooling
,”
J. Phys. D: Appl. Phys.
50
,
053002
(
2017
).
3.
V.
Franco
,
J.
Blázquez
,
J.
Ipus
,
J.
Law
,
L.
Moreno-Ramírez
, and
A.
Conde
, “
Magnetocaloric effect: From materials research to refrigeration devices
,”
Prog. Mater. Sci.
93
,
112
232
(
2018
).
4.
A.
Waske
,
M. E.
Gruner
,
T.
Gottschall
, and
O.
Gutfleisch
, “
Magnetocaloric materials for refrigeration near room temperature
,”
MRS Bull.
43
,
269
273
(
2018
).
5.
L. D.
Griffith
,
Y.
Mudryk
,
J.
Slaughter
, and
V. K.
Pecharsky
, “
Material-based figure of merit for caloric materials
,”
J. Appl. Phys.
123
,
034902
(
2018
).
6.
A.
Bartok
,
M.
Kustov
,
L.
Cohen
,
A.
Pasko
,
K.
Zehani
,
L.
Bessais
,
F.
Mazaleyrat
, and
M.
LoBue
, “
Study of the first paramagnetic to ferromagnetic transition in as prepared samples of Mn–Fe–P–Si magnetocaloric compounds prepared by different synthesis routes
,”
J. Magn. Magn. Mater.
400
,
333
338
(
2016
).
7.
L.
Mañosa
,
D.
González-Alonso
,
A.
Planes
,
E.
Bonnot
,
M.
Barrio
,
J.-L.
Tamarit
,
S.
Aksoy
, and
M.
Acet
, “
Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy
,”
Nat. Mater.
9
,
478
481
(
2010
).
8.
D.
Matsunami
,
A.
Fujita
,
K.
Takenaka
, and
M.
Kano
, “
Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN
,”
Nat. Mater.
14
,
73
78
(
2015
).
9.
A.
Aznar
,
A.
Gràcia-Condal
,
A.
Planes
,
P.
Lloveras
,
M.
Barrio
,
J.-L.
Tamarit
,
W.
Xiong
,
D.
Cong
,
C.
Popescu
, and
L.
Mañosa
, “
Giant barocaloric effect in all-d-metal Heusler shape memory alloys
,”
Phys. Rev. Mater.
3
,
044406
(
2019
).
10.
E.
Bonnot
,
R.
Romero
,
L.
Mañosa
,
E.
Vives
, and
A.
Planes
, “
Elastocaloric effect associated with the martensitic transition in shape-memory alloys
,”
Phys. Rev. Lett.
100
,
125901
(
2008
).
11.
S.
Qian
,
J.
Ling
,
Y.
Hwang
,
R.
Radermacher
, and
I.
Takeuchi
, “
Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems
,”
Int. J. Refrig.
56
,
65
80
(
2015
).
12.
Y.
Qu
,
A.
Gràcia-Condal
,
L.
Mañosa
,
A.
Planes
,
D.
Cong
,
Z.
Nie
,
Y.
Ren
, and
Y.
Wang
, “
Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy
,”
Acta Mater.
177
,
46
55
(
2019
).
13.
J.
Scott
, “
Electrocaloric materials
,”
Annu. Rev. Mater. Res.
41
,
229
240
(
2011
).
14.
M.
Ožbolt
,
A.
Kitanovski
,
J.
Tušek
, and
A.
Poredoš
, “
Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives
,”
Int. J. Refrig.
40
,
174
188
(
2014
).
15.
S.
Fähler
,
U. K.
Rößler
,
O.
Kastner
,
J.
Eckert
,
G.
Eggeler
,
H.
Emmerich
,
P.
Entel
,
S.
Müller
,
E.
Quandt
, and
K.
Albe
, “
Caloric effects in ferroic materials: New concepts for cooling
,”
Adv. Eng. Mater.
14
,
10
19
(
2012
).
16.
X.
Moya
,
E.
Defay
,
V.
Heine
, and
N. D.
Mathur
, “
Too cool to work
,”
Nat. Phys.
11
,
202
205
(
2015
).
17.
A.
Planes
,
T.
Castán
, and
A.
Saxena
, “
Thermodynamics of multicaloric effects in multiferroics
,”
Philos. Mag.
94
,
1893
1908
(
2014
).
18.
A.
Amirov
,
V.
Rodionov
,
I.
Starkov
,
A.
Starkov
, and
A.
Aliev
, “
Magneto-electric coupling in Fe48Rh52-PZT multiferroic composite
,”
J. Magn. Magn. Mater.
470
,
77
80
(
2019
).
19.
M. M.
Vopson
, “
Multicaloric effect: An outlook
,”
Physica B
513
,
103
105
(
2017
).
20.
E.
Stern-Taulats
,
T.
Castán
,
A.
Planes
,
L. H.
Lewis
,
R.
Barua
,
S.
Pramanick
,
S.
Majumdar
, and
L.
Mañosa
, “
Giant multicaloric response of bulk Fe49Rh51
,”
Phys. Rev. B
95
,
104424
(
2017
).
21.
A.
Czernuszewicz
,
J.
Kaleta
, and
D.
Lewandowski
, “
Multicaloric effect: Toward a breakthrough in cooling technology
,”
Energy Convers. Manage.
178
,
335
342
(
2018
).
22.
F.-X.
Liang
,
J.-Z.
Hao
,
F.-R.
Shen
,
H.-B.
Zhou
,
J.
Wang
,
F.-X.
Hu
,
J.
He
,
J.-R.
Sun
, and
B.-G.
Shen
, “
Experimental study on coupled caloric effect driven by dual fields in metamagnetic Heusler alloy Ni50Mn35In15
,”
APL Mater.
7
,
051102
(
2019
).
23.
N. M.
Bruno
,
S.
Wang
,
I.
Karaman
, and
Y. I.
Chumlyakov
, “
Reversible martensitic transformation under low magnetic fields in magnetic shape memory alloys
,”
Sci. Rep.
7
,
40434
(
2017
).
24.
A.
Kitanovski
,
U.
Plaznik
,
U.
Tomc
, and
A.
Poredos
, “
Present and future caloric refrigeration and heat-pump technologies
,”
Int. J. Refrig.
57
,
288
298
(
2015
).
25.
T.
Gottschall
,
K. P.
Skokov
,
M.
Fries
,
A.
Taubel
,
I.
Radulov
,
F.
Scheibel
,
D.
Benke
,
S.
Riegg
, and
O.
Gutfleisch
, “
Making a cool choice: The materials library of magnetic refrigeration
,”
Adv. Energy Mater.
9
,
1901322
(
2019
).
26.
J.
Liu
,
T.
Gottschall
,
K. P.
Skokov
,
J. D.
Moore
, and
O.
Gutfleisch
, “
Giant magnetocaloric effect driven by structural transitions
,”
Nat. Mater.
11
,
620
626
(
2012
).
27.
E.
Stern-Taulats
,
T.
Castán
,
L.
Mañosa
,
A.
Planes
,
N. D.
Mathur
, and
X.
Moya
, “
Multicaloric materials and effects
,”
MRS Bull.
43
,
295
299
(
2018
).
28.
Y.
Qu
,
D.
Cong
,
S.
Li
,
W.
Gui
,
Z.
Nie
,
M.
Zhang
,
Y.
Ren
, and
Y.
Wang
, “
Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy
,”
Acta Mater.
151
,
41
55
(
2018
).
29.
T.
Gottschall
,
A.
Gràcia-Condal
,
M.
Fries
,
A.
Taubel
,
L.
Pfeuffer
,
L.
Mañosa
,
A.
Planes
,
K. P.
Skokov
, and
O.
Gutfleisch
, “
A multicaloric cooling cycle that exploits thermal hysteresis
,”
Nat. Mater.
17
,
929
(
2018
).
30.
T.
Gottschall
,
K. P.
Skokov
,
F.
Scheibel
,
M.
Acet
,
M. G.
Zavareh
,
Y.
Skourski
,
J.
Wosnitza
,
M.
Farle
, and
O.
Gutfleisch
, “
Dynamical effects of the martensitic transition in magnetocaloric heusler alloys from direct ΔTad measurements under different magnetic-field-sweep rates
,”
Phys. Rev. Appl.
5
,
024013
(
2016
).
31.
C.
Salazar-Mejía
,
V.
Kumar
,
C.
Felser
,
Y.
Skourski
,
J.
Wosnitza
, and
A.
Nayak
, “
Measurement-protocol dependence of the magnetocaloric effect in Ni-Co-Mn-Sb Heusler alloys
,”
Phys. Rev. Appl.
11
,
054006
(
2019
).
32.
L.
Caron
,
N. B.
Doan
, and
L.
Ranno
, “
On entropy change measurements around first order phase transitions in caloric materials
,”
J. Phys.: Condens. Matter
29
,
075401
(
2017
).
33.
Z. Y.
Wei
,
W.
Sun
,
Q.
Shen
,
Y.
Shen
,
Y. F.
Zhang
,
E. K.
Liu
, and
J.
Liu
, “
Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography
,”
Appl. Phys. Lett.
114
,
101903
(
2019
).
34.
A.
Taubel
,
T.
Gottschall
,
M.
Fries
,
S.
Riegg
,
C.
Soon
,
K. P.
Skokov
, and
O.
Gutfleisch
, “
A comparative study on the magnetocaloric properties of Ni-Mn-X(-Co) Heusler alloys
,”
Phys. Status Solidi B
255
,
1700331
(
2017
).
35.
K. P.
Skokov
,
V. V.
Khovaylo
,
K.-H.
Müller
,
J. D.
Moore
,
J.
Liu
, and
O.
Gutfleisch
, “
Magnetocaloric materials with first-order phase transition: Thermal and magnetic hysteresis in LaFe11.8Si1.2 and Ni2.21Mn0.77Ga1.02 (invited)
,”
J. Appl. Phys.
111
,
07A910
(
2012
).
36.
Z. Y.
Wei
,
E. K.
Liu
,
J. H.
Chen
,
Y.
Li
,
G. D.
Liu
,
H. Z.
Luo
,
X. K.
Xi
,
H. W.
Zhang
,
W. H.
Wang
, and
G. H.
Wu
, “
Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases
,”
Appl. Phys. Lett.
107
,
022406
(
2015
).
37.
R.
Tickle
and
R.
James
, “
Magnetic and magnetomechanical properties of Ni2MnGa
,”
J. Magn. Magn. Mater.
195
,
627
638
(
1999
).
38.
D.
Cong
,
W.
Xiong
,
A.
Planes
,
Y.
Ren
,
L.
Mañosa
,
P.
Cao
,
Z.
Nie
,
X.
Sun
,
Z.
Yang
,
X.
Hong
, and
Y.
Wang
, “
Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys
,”
Phys. Rev. Lett.
122
,
255703
(
2019
).
39.
G. S.
Bigelow
,
S. A.
Padula
,
A.
Garg
,
D.
Gaydosh
, and
R. D.
Noebe
, “
Characterization of ternary NiTiPd high-temperature shape-memory alloys under load-biased thermal cycling
,”
Metall. Mater. Trans. A
41
,
3065
3079
(
2010
).
40.
Z.
Yang
,
D.
Cong
,
L.
Huang
,
Z.
Nie
,
X.
Sun
,
Q.
Zhang
, and
Y.
Wang
, “
Large elastocaloric effect in a Ni–Co–Mn–Sn magnetic shape memory alloy
,”
Mater. Des.
92
,
932
936
(
2016
).
41.
T.
Gottschall
,
K. P.
Skokov
,
D.
Benke
,
M. E.
Gruner
, and
O.
Gutfleisch
, “
Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials
,”
Phys. Rev. B
93
,
184431
(
2016
).
You do not currently have access to this content.