Spin-wave bandpass filters with small sizes on the basis of thin [yttrium-iron garnet (YIG)] films on [gadolinium-gallium garnet (GGG)] and substrates have been constructed. A thin YIG film with a thickness of on substrates has been grown by the ion-beam sputtering. It is found that the coplanar antenna structure can be successfully used to construct tunable small-sized narrowband bandpass filters based on spin waves. The filter transmission characteristic has a nonreciprocity when the direction of energy propagation changes. Spin-wave filter characteristics are analyzed using the transmission-matrix formalism.
REFERENCES
1.
Th.
Cameron
, “5G communication and its future,” see https://www.analog.com/media/en/technical-documentation/tech-articles/5G-Communication-and-Its-Future.pdf.2.
Z. M.
Temesvari
, D.
Maros
, and P.
Kadar
, “Review of mobile communication and the 5G in manufacturing
,” Procedia Manuf.
32
, 600
(2019
). 3.
S.
Li
, L. D.
Xu
, and S.
Zhao
, “5G internet of things: A survey
,” J. Ind. Inf. Integr.
10
, 1
(2018
). 4.
J.
Cheng
, W.
Chen
, F.
Tao
, and C. L.
Lin
, “Industrial IoT in 5G environment towards smart manufacturing
,” J. Ind. Inf. Integr.
10
, 10
(2018
). 5.
See https://en.wikipedia.org/wiki/SpaceX_Starlink for information about constellation design and status of the SpaceX Starlink, its satellite hardware, and frequency bands.
6.
See https://en.wikipedia.org/wiki/OneWeb_satellite_constellation for information about design characteristics of the OneWeb satellites.
7.
Z.
Chen
and V. G.
Harris
, “Ferrite film growth on semiconductor substrates towards microwave and millimeter wave integrated circuits
,” J. Appl. Phys.
112
, 081101
(2012
). 8.
D. D.
Stancil
and A.
Prabhakar
, Spin Waves. Theory and Applications
(Springer
, New York
, 2009
).9.
P.
Kabos
and V. S.
Stalmachov
, Magnetostatic Waves and Their Applications
(Chapman
, New York
, 1994
).10.
See http://www.magneton.ru/cat.php?id=104#main_top for information about spin-wave filters on fixed frequencies, tunable filters with coaxial and microstrip input/output, and nonlinear filters produced and designed by the “Magneton” JSC.
11.
S. A.
Manuilov
, R.
Fors
, S. I.
Khartsev
, and A. M.
Grishin
, “Submicron film magnetostatic wave band pass filters
,” J. Appl. Phys.
105
, 033917
(2009
). 12.
M.
Mruczkiewicz
, E. S.
Pavlov
, S. L.
Vysotsky
, M.
Krawczyk
, Yu. A.
Filimonov
, and S. A.
Nikitov
, “Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation
,” Phys. Rev. B
90
, 174416
(2014
). 13.
V. D.
Bessonov
, M.
Mruczkiewicz
, R.
Gieniusz
, U.
Guzowska
, A.
Maziewski
, A. I.
Stognij
, and M.
Krawczyk
, “Magnonic band gaps in YIG-based one-dimensional magnonic crystals: An array of grooves versus an array of metallic stripes
,” Phys. Rev. B
91
, 104421
(2015
). 14.
S. L.
Vysotskii
, Yu. V.
Khivintsev
, V. K.
Sakharov
, G. M.
Dudko
, A. V.
Kozhevnikov
, S. A.
Nikitov
, N. N.
Novitskii
, A. I.
Stognij
, and Yu. A.
Filimonov
, “Magnetostatic surface wave dispersion and losses in an yttrium-iron garnet film with a subwavelength periodic structure
,” IEEE Magn. Lett.
8
, 3706104
(2017
). 15.
A. I.
Stognij
, L. V.
Lutsev
, V. E.
Bursian
, and N. N.
Novitskii
, “Growth and spin-wave properties of thin films on Si substrates
,” J. Appl. Phys.
118
, 023905
(2015
). 16.
A.
Stognij
, L.
Lutsev
, N.
Novitskii
, A.
Bespalov
, O.
Golikova
, V.
Ketsko
, R.
Gieniusz
, and A.
Maziewski
, “Synthesis, magnetic properties and spin-wave propagation in thin films sputtered on GaN-based substrates
,” J. Phys. D: Appl. Phys.
48
, 485002
(2015
). 17.
L. V.
Lutsev
, A. I.
Stognij
, N. N.
Novitskii
, V. E.
Bursian
, A.
Maziewski
, and R.
Gieniusz
, “Magnetic properties, spin waves and interaction between spin excitations and 2D electrons in interface layer in //GaAs-heterostructures
,” J. Phys. D: Appl. Phys.
51
, 355002
(2018
). 18.
B.
Heinrich
, C.
Burrowes
, E.
Montoya
, B.
Kardasz
, E.
Girt
, Y.-Y.
Song
, Y.
Sun
, and M.
Wu
, “Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces
,” Phys. Rev. Lett.
107
, 066604
(2011
). 19.
Y.
Sun
, Y.-Y.
Song
, H.
Chang
, M.
Kabatek
, M.
Jantz
, W.
Schneider
, M.
Wu
, H.
Schultheiss
, and A.
Hoffmann
, “Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films
,” Appl. Phys. Lett.
101
, 152405
(2012
). 20.
M. C.
Onbasli
, A.
Kehlberger
, D. H.
Kim
, G.
Jakob
, M.
Kläui
, A. V.
Chumak
, B.
Hillebrands
, and C. A.
Ross
, “Pulsed laser deposition of epitaxial yttrium iron garnet films with low gilbert damping and bulk-like magnetization
,” APL Mater.
2
, 106102
(2014
). 21.
Ch.
Hauser
, T.
Richter
, N.
Homonnay
, Ch.
Eisenschmidt
, M.
Qaid
, H.
Deniz
, D.
Hesse
, M.
Sawicki
, S. G.
Ebbinghaus
, and G.
Schmidt
, “Yttrium iron garnet thin films with very low damping obtained by recrystallization of amorphous material
,” Sci. Rep.
6
, 20827
(2016
). 22.
N. S.
Sokolov
, V. V.
Fedorov
, A. M.
Korovin
, S. M.
Suturin
, D. A.
Baranov
, S. V.
Gastev
, B. B.
Krichevtsov
, K. Yu.
Maksimova
, A. I.
Grunin
, V. E.
Bursian
, L. V.
Lutsev
, and M.
Tabuchi
, “Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static and dynamic magnetic properties
,” J. Appl. Phys.
119
, 023903
(2016
). 23.
L. V.
Lutsev
, A. M.
Korovin
, V. E.
Bursian
, S. V.
Gastev
, V. V.
Fedorov
, S. M.
Suturin
, and N. S.
Sokolov
, “Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films
,” Appl. Phys. Lett.
108
, 182402
(2016
). 24.
A.
Krysztofik
, L. E.
Coy
, P.
Kuświk
, K.
Załeski
, H.
Głowiński
, and J.
Dubowik
, “Ultra-low damping in lift-off structured yttrium iron garnet thin films
,” Appl. Phys. Lett.
111
, 192404
(2017
). 25.
L. V.
Lutsev
, A. M.
Korovin
, S. M.
Suturin
, L. S.
Vlasenko
, M. P.
Volkov
, and N. S.
Sokolov
, “Spin excitations in laser-molecular-beam epitaxy grown nanosized YIG films: Towards low relaxation and desirable magnetization profile
,” J. Phys. D: Appl. Phys.
53
, 265003
(2020
). 26.
L. V.
Lutsev
, “Dispersion relations and low relaxation of spin waves in thin magnetic films
,” Phys. Rev. B
85
, 214413
(2012
). 27.
A. G.
Gurevich
and G. A.
Melkov
, Magnetization Oscillations and Waves
(CRC Press
, New York
, 1996
).28.
R. W.
Damon
and J. R.
Eshbach
, “Magnetostatic modes of a ferromagnet slab
,” J. Phys. Chem. Solids
19
, 308
(1961
). 29.
J.
Choma
and W. K.
Chen
, Feedback Networks: Theory and Circuit Applications
(World Scientific
, Singapore
, 2007
).30.
R.
Mavaddat
, Network Scattering Parameter
(World Scientific
, Singapore
, 1996
).31.
K. C.
Gupta
, R.
Garg
, and R.
Chadha
, Computer-aided Design of Microwave Circuits
(Artech
, Dedham, MA
, 1981
).32.
L. V.
Lutsev
, S. M.
Suturin
, A. M.
Korovin
, V. E.
Bursian
, and N. S.
Sokolov
, “Relaxation losses of magnetic excitations in nanoscale films of yttrium iron garnet
,” Tech. Phys. Lett.
44
, 558
(2018
). 33.
A. M.
Clogston
, “Relaxation phenomena in ferrites
,” Bell Syst. Tech. J.
34
, 739
(1955
). 34.
S.
Krupička
, Physik der Ferrite und der Verwandten Magnetischen Oxide
(Academia Verlag der Tschechoslowakischen
, Prag
, 1973
).35.
36.
C. L.
Jermain
, S. V.
Aradhya
, N. D.
Reynolds
, R. A.
Buhrman
, J. T.
Brangham
, M. R.
Page
, P. C.
Hammel
, F. Y.
Yang
, and D. C.
Ralph
, “Increased low-temperature damping in yttrium iron garnet thin films
,” Phys. Rev. B
95
, 174411
(2017
). 37.
I.
Wolff
, Coplanar Microwave Integrated Circuits
(Wiley
, New Jersey
, 2006
).38.
J.
Coonrod
and B.
Rautio
, “Comparing microstrip and CPW performance
,” Microwave J.
55
, 74
(2012
).39.
40.
G. B.
Scott
and J. L.
Page
, “Pb valence in iron garnets
,” J. Appl. Phys.
48
, 1342
(1977
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.