Spin-wave bandpass filters with small sizes on the basis of thin Y3Fe5O12 [yttrium-iron garnet (YIG)] films on Gd3Ga5O12 [gadolinium-gallium garnet (GGG)] and SiO2/Si substrates have been constructed. A thin YIG film with a thickness of 0.8μm on SiO2/Si substrates has been grown by the ion-beam sputtering. It is found that the coplanar antenna structure can be successfully used to construct tunable small-sized narrowband bandpass filters based on spin waves. The filter transmission characteristic has a nonreciprocity when the direction of energy propagation changes. Spin-wave filter characteristics are analyzed using the transmission-matrix formalism.

2.
Z. M.
Temesvari
,
D.
Maros
, and
P.
Kadar
, “
Review of mobile communication and the 5G in manufacturing
,”
Procedia Manuf.
32
,
600
(
2019
).
3.
S.
Li
,
L. D.
Xu
, and
S.
Zhao
, “
5G internet of things: A survey
,”
J. Ind. Inf. Integr.
10
,
1
(
2018
).
4.
J.
Cheng
,
W.
Chen
,
F.
Tao
, and
C. L.
Lin
, “
Industrial IoT in 5G environment towards smart manufacturing
,”
J. Ind. Inf. Integr.
10
,
10
(
2018
).
5.
See https://en.wikipedia.org/wiki/SpaceX_Starlink for information about constellation design and status of the SpaceX Starlink, its satellite hardware, and frequency bands.
6.
See https://en.wikipedia.org/wiki/OneWeb_satellite_constellation for information about design characteristics of the OneWeb satellites.
7.
Z.
Chen
and
V. G.
Harris
, “
Ferrite film growth on semiconductor substrates towards microwave and millimeter wave integrated circuits
,”
J. Appl. Phys.
112
,
081101
(
2012
).
8.
D. D.
Stancil
and
A.
Prabhakar
,
Spin Waves. Theory and Applications
(
Springer
,
New York
,
2009
).
9.
P.
Kabos
and
V. S.
Stalmachov
,
Magnetostatic Waves and Their Applications
(
Chapman
,
New York
,
1994
).
10.
See http://www.magneton.ru/cat.php?id=104#main_top for information about spin-wave filters on fixed frequencies, tunable filters with coaxial and microstrip input/output, and nonlinear filters produced and designed by the “Magneton” JSC.
11.
S. A.
Manuilov
,
R.
Fors
,
S. I.
Khartsev
, and
A. M.
Grishin
, “
Submicron Y3Fe5O12 film magnetostatic wave band pass filters
,”
J. Appl. Phys.
105
,
033917
(
2009
).
12.
M.
Mruczkiewicz
,
E. S.
Pavlov
,
S. L.
Vysotsky
,
M.
Krawczyk
,
Yu. A.
Filimonov
, and
S. A.
Nikitov
, “
Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation
,”
Phys. Rev. B
90
,
174416
(
2014
).
13.
V. D.
Bessonov
,
M.
Mruczkiewicz
,
R.
Gieniusz
,
U.
Guzowska
,
A.
Maziewski
,
A. I.
Stognij
, and
M.
Krawczyk
, “
Magnonic band gaps in YIG-based one-dimensional magnonic crystals: An array of grooves versus an array of metallic stripes
,”
Phys. Rev. B
91
,
104421
(
2015
).
14.
S. L.
Vysotskii
,
Yu. V.
Khivintsev
,
V. K.
Sakharov
,
G. M.
Dudko
,
A. V.
Kozhevnikov
,
S. A.
Nikitov
,
N. N.
Novitskii
,
A. I.
Stognij
, and
Yu. A.
Filimonov
, “
Magnetostatic surface wave dispersion and losses in an yttrium-iron garnet film with a subwavelength periodic structure
,”
IEEE Magn. Lett.
8
,
3706104
(
2017
).
15.
A. I.
Stognij
,
L. V.
Lutsev
,
V. E.
Bursian
, and
N. N.
Novitskii
, “
Growth and spin-wave properties of thin Y3Fe5O12 films on Si substrates
,”
J. Appl. Phys.
118
,
023905
(
2015
).
16.
A.
Stognij
,
L.
Lutsev
,
N.
Novitskii
,
A.
Bespalov
,
O.
Golikova
,
V.
Ketsko
,
R.
Gieniusz
, and
A.
Maziewski
, “
Synthesis, magnetic properties and spin-wave propagation in thin Y3Fe5O12 films sputtered on GaN-based substrates
,”
J. Phys. D: Appl. Phys.
48
,
485002
(
2015
).
17.
L. V.
Lutsev
,
A. I.
Stognij
,
N. N.
Novitskii
,
V. E.
Bursian
,
A.
Maziewski
, and
R.
Gieniusz
, “
Magnetic properties, spin waves and interaction between spin excitations and 2D electrons in interface layer in Y3Fe5O12/AlOx/GaAs-heterostructures
,”
J. Phys. D: Appl. Phys.
51
,
355002
(
2018
).
18.
B.
Heinrich
,
C.
Burrowes
,
E.
Montoya
,
B.
Kardasz
,
E.
Girt
,
Y.-Y.
Song
,
Y.
Sun
, and
M.
Wu
, “
Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces
,”
Phys. Rev. Lett.
107
,
066604
(
2011
).
19.
Y.
Sun
,
Y.-Y.
Song
,
H.
Chang
,
M.
Kabatek
,
M.
Jantz
,
W.
Schneider
,
M.
Wu
,
H.
Schultheiss
, and
A.
Hoffmann
, “
Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films
,”
Appl. Phys. Lett.
101
,
152405
(
2012
).
20.
M. C.
Onbasli
,
A.
Kehlberger
,
D. H.
Kim
,
G.
Jakob
,
M.
Kläui
,
A. V.
Chumak
,
B.
Hillebrands
, and
C. A.
Ross
, “
Pulsed laser deposition of epitaxial yttrium iron garnet films with low gilbert damping and bulk-like magnetization
,”
APL Mater.
2
,
106102
(
2014
).
21.
Ch.
Hauser
,
T.
Richter
,
N.
Homonnay
,
Ch.
Eisenschmidt
,
M.
Qaid
,
H.
Deniz
,
D.
Hesse
,
M.
Sawicki
,
S. G.
Ebbinghaus
, and
G.
Schmidt
, “
Yttrium iron garnet thin films with very low damping obtained by recrystallization of amorphous material
,”
Sci. Rep.
6
,
20827
(
2016
).
22.
N. S.
Sokolov
,
V. V.
Fedorov
,
A. M.
Korovin
,
S. M.
Suturin
,
D. A.
Baranov
,
S. V.
Gastev
,
B. B.
Krichevtsov
,
K. Yu.
Maksimova
,
A. I.
Grunin
,
V. E.
Bursian
,
L. V.
Lutsev
, and
M.
Tabuchi
, “
Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static and dynamic magnetic properties
,”
J. Appl. Phys.
119
,
023903
(
2016
).
23.
L. V.
Lutsev
,
A. M.
Korovin
,
V. E.
Bursian
,
S. V.
Gastev
,
V. V.
Fedorov
,
S. M.
Suturin
, and
N. S.
Sokolov
, “
Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films
,”
Appl. Phys. Lett.
108
,
182402
(
2016
).
24.
A.
Krysztofik
,
L. E.
Coy
,
P.
Kuświk
,
K.
Załeski
,
H.
Głowiński
, and
J.
Dubowik
, “
Ultra-low damping in lift-off structured yttrium iron garnet thin films
,”
Appl. Phys. Lett.
111
,
192404
(
2017
).
25.
L. V.
Lutsev
,
A. M.
Korovin
,
S. M.
Suturin
,
L. S.
Vlasenko
,
M. P.
Volkov
, and
N. S.
Sokolov
, “
Spin excitations in laser-molecular-beam epitaxy grown nanosized YIG films: Towards low relaxation and desirable magnetization profile
,”
J. Phys. D: Appl. Phys.
53
,
265003
(
2020
).
26.
L. V.
Lutsev
, “
Dispersion relations and low relaxation of spin waves in thin magnetic films
,”
Phys. Rev. B
85
,
214413
(
2012
).
27.
A. G.
Gurevich
and
G. A.
Melkov
,
Magnetization Oscillations and Waves
(
CRC Press
,
New York
,
1996
).
28.
R. W.
Damon
and
J. R.
Eshbach
, “
Magnetostatic modes of a ferromagnet slab
,”
J. Phys. Chem. Solids
19
,
308
(
1961
).
29.
J.
Choma
and
W. K.
Chen
,
Feedback Networks: Theory and Circuit Applications
(
World Scientific
,
Singapore
,
2007
).
30.
R.
Mavaddat
,
Network Scattering Parameter
(
World Scientific
,
Singapore
,
1996
).
31.
K. C.
Gupta
,
R.
Garg
, and
R.
Chadha
,
Computer-aided Design of Microwave Circuits
(
Artech
,
Dedham, MA
,
1981
).
32.
L. V.
Lutsev
,
S. M.
Suturin
,
A. M.
Korovin
,
V. E.
Bursian
, and
N. S.
Sokolov
, “
Relaxation losses of magnetic excitations in nanoscale films of yttrium iron garnet
,”
Tech. Phys. Lett.
44
,
558
(
2018
).
33.
A. M.
Clogston
, “
Relaxation phenomena in ferrites
,”
Bell Syst. Tech. J.
34
,
739
(
1955
).
34.
S.
Krupička
,
Physik der Ferrite und der Verwandten Magnetischen Oxide
(
Academia Verlag der Tschechoslowakischen
,
Prag
,
1973
).
35.
M.
Sparks
,
Ferromagnetic-Relaxation Theory
(
McGraw-Hill
,
New York
,
1964
).
36.
C. L.
Jermain
,
S. V.
Aradhya
,
N. D.
Reynolds
,
R. A.
Buhrman
,
J. T.
Brangham
,
M. R.
Page
,
P. C.
Hammel
,
F. Y.
Yang
, and
D. C.
Ralph
, “
Increased low-temperature damping in yttrium iron garnet thin films
,”
Phys. Rev. B
95
,
174411
(
2017
).
37.
I.
Wolff
,
Coplanar Microwave Integrated Circuits
(
Wiley
,
New Jersey
,
2006
).
38.
J.
Coonrod
and
B.
Rautio
, “
Comparing microstrip and CPW performance
,”
Microwave J.
55
,
74
(
2012
).
39.
R. A.
Serway
,
Principles of Physics
, 2nd ed. (
Fort Worth
,
Texas
,
1998
).
40.
G. B.
Scott
and
J. L.
Page
, “
Pb valence in iron garnets
,”
J. Appl. Phys.
48
,
1342
(
1977
).
You do not currently have access to this content.