The realization of p-type transparent conductive oxides (TCOs) is a long-standing difficulty because of their generally large hole effective mass and low doping limit ascribed to the strong electronegativity of oxygen. By introducing a Bi atom with a lone-pair s orbital on the B site, double perovskite Ba2BiTaO6 could exhibit a dispersive upper valence band and a small hole effective mass due to the strong sp antibonding coupling. In contrast to n-type TCOs, i.e., ZnO and In2O3, first-principles studies on the intrinsic defects of Ba2BiTaO6 show that it is able to exhibit a good p-type property or stay intrinsic instead of being n-type by tuning the chemical potentials and its dominated defects (VBa, VBi, BaBi, and BiTa) are shallow acceptors, indicating that Ba2BiTaO6 is able to be a promising p-type TCO. This work shows that perovskites could be a class of potential p-type TCOs by introducing strong sp coupling with lone-pair-s-orbital elements.

1.
A.
Kudo
,
H.
Yanagi
,
K.
Ueda
,
H.
Hosono
,
H.
Kawazoe
, and
Y.
Yano
,
Appl. Phys. Lett.
75
,
2851
(
1999
).
2.
K.
Tonooka
,
H.
Bando
, and
Y.
Aiura
,
Thin Solid Films
445
,
327
(
2003
).
3.
4.
A.
Jain
,
P.
Sagar
, and
R. M.
Mehra
,
Solid-State Electron.
50
,
1420
(
2006
).
5.
B. E.
Sernelius
,
K.-F.
Berggren
,
Z.-C.
Jin
,
I.
Hamberg
, and
C. G.
Granqvist
,
Phys. Rev. B
37
,
10244
(
1988
).
6.
H.
Kawazoe
,
M.
Yasukawa
,
H.
Hyodo
,
M.
Kurita
, and
H.
Hosono
,
Nature
389
,
939
(
1997
).
7.
8.
M.
Graužinytė
,
S.
Goedecker
, and
J. A.
Flores-Livas
,
Phys. Rev. Mater.
2
,
104604
(
2018
).
9.
T.
Koyanagi
,
H.
Harima
,
A.
Yanase
, and
H.
Katayama-yoshida
,
J. Phys. Chem. Solids
64
,
1443
(
2003
).
10.
A.
Nakanishi
and
H.
Katayama-Yoshida
,
Solid State Commun.
152
,
24
(
2012
).
11.
X.
Nie
,
S. H.
Wei
, and
S. B.
Zhang
,
Phys. Rev. Lett.
88
,
066405
(
2002
).
12.
S. L.
Shi
and
S. J.
Xu
,
J. Appl. Phys.
109
,
053510
(
2011
).
13.
A.
Walsh
,
J. L. F.
Da Silva
, and
S.-H.
Wei
,
Phys. Rev. B Condens. Matter
78
,
075211
(
2008
).
14.
H.
Katayama-Yoshida
,
T.
Koyanagi
,
H.
Funashima
,
H.
Harima
, and
A.
Yanase
,
Solid State Commun.
126
,
135
(
2003
).
15.
W.-J.
Yin
,
J.-H.
Yang
,
J.
Kang
,
Y.
Yan
, and
S.-H.
Wei
,
J. Mater. Chem. A
3
,
8926
(
2015
).
16.
A.
Bathia
,
G.
Hautier
,
T.
Nilgianskul
,
A.
Miglio
,
G.-M.
Rignanese
,
X.
Gonze
, and
J.
Suntivich
,
Chem. Mater.
28
,
30
(
2015
).
17.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
18.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
19.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
20.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
21.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
22.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
23.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
24.
Y.
Yan
and
S.-H.
Wei
,
Phys. Status Solidi (b)
245
,
641
(
2008
).
25.
S.
Vasala
and
M.
Karppinen
,
Prog. Solid State Chem.
43
,
1
(
2015
).
26.
Q.
Zhou
and
B. J.
Kennedy
,
Solid State Sci.
7
,
287
(
2005
).
27.
J.
Brandon
,
P.
Chieh
,
W.
Pearson
, and
P.
Riley
,
Acta Crystallogr.
31
,
236
(
1975
).
28.
S. B.
Zhang
,
S. H.
Wei
,
A.
Zunger
, and
H.
Katayama-Yoshida
,
Phys. Rev. B
57
,
9642
(
1998
).
29.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S. H.
Wei
,
Appl. Phys. Lett.
94
,
041903
(
2009
).
You do not currently have access to this content.