Bulk n-type β-Ga2O3 samples with orientation (−201) and (010) were exposed to a high density hydrogen plasma at 330 °C for 0.5 h. The effects were radically different for the two orientations. For the (−201) sample, H plasma exposure increased the net surface concentration of shallow donors from 2.7 × 1017 cm−3 to 2.6 × 1018 cm−3, with the shallow donors having an ionization energy close to 20 meV as deduced from the temperature dependence of the series resistance of Ni Schottky diodes. By sharp contrast, H plasma exposure of the (010) sample led to a strong decrease in the net shallow donor density from 3.2 × 1017 cm−3 to below 1015 cm−3 in the top 0.9 μm of the sample and to 3.2 × 1016 cm−3 near the edge of the space charge region at 0 V, with the total width of the region affected by plasma treatment being close to 1.1 μm. For both orientations, we observed a major decrease in the concentration of the dominant E2 traps near Ec-0.82 eV related to Fe acceptors. The deep trap spectra in hydrogenated samples were dominated by the E2* traps commonly ascribed to native defects in β-Ga2O3. The peak of these traps with a level near Ec-0.74 eV was masked in the starting samples by the peak of the E2 Fe acceptors present in high concentration, so that E2* only broadened the Fe peak on the low temperature side, but could be revealed by the modeling of the spectra. The concentration of the E2* center was not strongly affected in the hydrogen-treated samples with orientation (010), but in the (−201) samples, the concentration of the E2* peak was greatly enhanced. The results are discussed in conjunction with previous reports on hydrogen plasma treatment of β-Ga2O3 and on obtaining p-type conductivity in the surface layers of β-Ga2O3 crystals annealed in molecular hydrogen at high temperatures [Islam et al., Sci. Rep. 10, 6134 (2020)].

1.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
2.
S. J.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
,
J. Appl. Phys.
124
,
220901
(
2018
).
3.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
97
,
142106
(
2010
).
4.
P.
Deak
,
Q. D.
Ho
,
F.
Seemann
,
B.
Aradi
,
M.
Lorke
, and
T.
Frauenheim
,
Phys. Rev. B
95
,
075208
(
2017
).
5.
M. E.
Ingebrigtsen
,
A. Y.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstubner
,
A.
Perron
,
L.
Vines
, and
J. B.
Varley
,
APL Mater.
7
,
022510
(
2019
).
6.
J. E. N.
Swallow
,
J. B.
Varley
,
L. A. H.
Jones
,
J. T.
Gibbon
,
L. F. J.
Piper
,
V. R.
Dhanak
, and
T. D.
Veal
,
APL Mater.
7
,
022528
(
2019
).
7.
J. R.
Ritter
,
J.
Huso
,
P. T.
Dickens
,
J. B.
Varley
,
K. G.
Lynn
, and
M. D.
McCluskey
,
Appl. Phys. Lett.
113
,
052101
(
2018
).
8.
Y.
Qin
,
M.
Stavola
,
W.
Beall Fowler
,
P.
Weiser
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
8
,
Q3103
(
2019
).
9.
M.
Stavola
,
W.
Beall Fowler
,
Y.
Qin
,
P.
Weiser
, and
S. J.
Pearton
, “
Thermal stabilities of hydrogen-related defects in Ga₂O₃
,” in
International Conference on Defects in Semiconductors
,
Seattle, WA
, July 2019.
10.
A. Y.
Polyakov
,
I.-H.
Lee
,
N. B.
Smirnov
,
E. B.
Yakimov
,
I. V.
Shchemerov
,
A. V.
Chernykh
,
A. I.
Kochkova
,
A. A.
Vasilev
,
A. S.
Shikoh
,
P. H.
Carey
 IV
,
F.
Ren
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
8
,
P661
(
2019
).
11.
R.
Sharma
,
E.
Patrick
,
M. E.
Law
,
S.
Ahn
,
F.
Ren
,
S. J.
Pearton
, and
A.
Kuramata
,
ECS J. Solid State Sci Technol.
6
,
P794
(
2017
).
12.
A. Y.
Polyakov
,
I.-H.
Lee
,
N. B.
Smirnov
,
E. B.
Yakimov
,
I. V.
Shchemerov
,
A. V.
Chernykh
,
A. I.
Kochkova
,
A. A.
Vasilev
,
F.
Ren
,
P. H.
Carey
, and
S. J.
Pearton
,
Appl. Phys. Lett.
115
,
032101
(
2019
).
13.
M. M.
Islam
,
M. O.
Liedke
,
D.
Winarski
,
M.
Butterling
,
A.
Wagner
,
P.
Hosemann
,
Y.
Wang
,
B.
Uberuaga
, and
F. A.
Selim
,
Sci. Rep.
10
,
6134
(
2020
).
14.
See http://www.tamura-ss.co.jp/en/products for details on wafer characteristics.
15.
J. V.
Li
and
G.
Ferrari
, in
Capacitance Spectroscopy of Semiconductors
(
Pan Stanford Publishing Pte Ltd
,
Singapore
,
2018
).
16.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I.-H.
Lee
, and
S. J.
Pearton
,
J. Vac. Sci. Technol. B
33
,
061203
(
2015
).
17.
A. Y.
Polyakov
,
I.-H.
Lee
,
N. B.
Smirnov
,
E. B.
Yakimov
,
I. V.
Shchemerov
,
A. V.
Chernykh
,
A. I.
Kochkova
,
A. A.
Vasilev
,
P. H.
Carey
,
F.
Ren
,
D. J.
Smith
, and
S. J.
Pearton
,
APL Mater.
7
,
061102
(
2019
).
18.
E.
Farzana
,
E.
Ahmadi
,
J. S.
Speck
,
A. R.
Arehart
, and
S. A.
Ringel
,
J. Appl. Phys.
123
,
161410
(
2018
).
19.
E.
Farzana
,
M. F.
Chaiken
,
T. E.
Blue
,
A. R.
Arehart
, and
S. A.
Ringel
,
APL Mater.
7
,
022502
(
2019
).
20.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
E. B.
Yakimov
,
S. J.
Pearton
,
C.
Fares
,
J.
Yang
,
F.
Ren
,
J.
Kim
,
P. B.
Lagov
,
V. S.
Stolbunov
, and
A.
Kochkova
,
Appl. Phys. Lett.
113
,
092102
(
2018
).
21.
M. E.
Ingebrigtsen
,
J. B.
Varley
,
A. Y.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
, and
L.
Vines
,
Appl. Phys. Lett.
112
,
042104
(
2018
).
22.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
S. J.
Pearton
,
F.
Ren
,
A. V.
Chernykh
, and
A. I.
Kochkova
,
Appl. Phys. Lett.
113
,
142102
(
2018
).
23.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
E. B.
Yakimov
,
S. J.
Pearton
,
F.
Ren
,
A. V.
Chernykh
,
D.
Gogova
, and
A. I.
Kochkova
,
ECS J. Solid State Sci. Technol.
8
,
Q3019
(
2019
).
24.
A. T.
Neal
,
S.
Mou
,
S.
Rafique
,
H.
Zhao
,
E.
Ahmadi
,
J. S.
Speck
,
K. T.
Stevens
,
J. D.
Blevins
,
D. B.
Thomson
,
N.
Moser
,
K. D.
Chabak
, and
G. H.
Jessen
,
Appl. Phys. Lett.
113
,
062101
(
2018
).
25.
C. A.
Lenyk
,
T. D.
Gustafson
,
L. E.
Halliburton
, and
N. C.
Giles
,
J. Appl. Phys.
126
,
245701
(
2019
).
26.
K.
Irmscher
,
Z.
Galazka
,
M.
Pietsch
,
R.
Uecker
, and
R.
Fornari
,
J. Appl. Phys.
110
,
063720
(
2011
).
27.
Z.
Zhang
,
E.
Farzana
,
A. R.
Arehart
, and
S. A.
Ringel
,
Appl. Phys. Lett.
108
,
052105
(
2016
).
28.
J.
Kim
,
S. J.
Pearton
,
C.
Fares
,
J.
Yang
,
F.
Ren
,
S.
Kim
, and
A. Y.
Polyakov
,
J. Mater. Chem. C
7
,
10
(
2019
).
29.
Z.
Galazka
,
Semicond. Sci. Technol.
33
,
113001
(
2018
).
You do not currently have access to this content.