Structural disorder has been known to suppress carrier concentration and carrier mobility in common covalent semiconductors, such as silicon, by orders of magnitude. This is expected from a reduced overlap of the electron clouds on neighboring orbitals and the formation of localized tail states near the band edges caused by local distortions and lack of periodicity in the amorphous phase. In striking contrast to the covalent semiconductors, wide-bandgap oxides of post-transition metals with ionic bonding not only allow for crystalline-like electron mobility upon amorphization, but also exhibit two orders of magnitude higher carrier concentration in the disordered phase as compared to the crystalline oxide. Here, the results of computationally intensive ab initio molecular dynamics simulations, comprehensive structural analysis, and accurate density-functional calculations reveal complex interplay between local distortions, coordination, and long-range bond morphology and help establish the microscopic origin of carrier generation and transport across the crystalline–amorphous transition in In2O3x. Departing from traditional oxygen vacancy in crystalline oxides, the derived structural descriptors help categorize “defects” in disordered ionic oxides, quantify the degree of the associated electron localization and binding energy, and determine their role in the resulting electronic and optical properties. The results will be instrumental in the development of next-generation transparent amorphous semiconductors with a combination of properties not achievable in Si-based architectures.

1.
K.
Chopra
,
S.
Major
, and
D.
Pandya
, “
Transparent conductors—A status review
,”
Thin Solid Films
102
,
1
46
(
1983
).
2.
A. L.
Dawar
and
J. C.
Joshi
, “
Semiconducting transparent thin films: Their properties and applications
,”
J. Mater. Sci.
19
,
1
23
(
1984
).
3.
H.
Hartnagel
,
Semiconducting Transparent Thin Films
(
Institute of Physics Publishing
,
1995
).
4.
D. S.
Ginley
and
C.
Bright
, “
Transparent conducting oxides
,”
MRS Bull.
25
,
15
18
(
2000
).
5.
J. F.
Wager
,
D. A.
Keszler
, and
R. E.
Presley
,
Transparent Electronics
(
Springer
,
2008
), Vol. 112.
6.
Transparent Electronics: From Synthesis to Applications, edited by A. Facchetti and T. Marks (John Wiley and Sons, 2010).
7.
H.
Hosono
and
D. C.
Paine
,
Handbook of Transparent Conductors
(
Springer Science and Business Media
,
2010
).
8.
P.
Barquinha
,
R.
Martins
,
L.
Pereira
, and
E.
Fortunato
,
Transparent Oxide Electronics: From Materials to Devices
(
John Wiley and Sons
,
2012
).
9.
K.
Ellmer
, “
Past achievements and future challenges in the development of optically transparent electrodes
,”
Nat. Photonics
6
,
809
817
(
2012
).
10.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
, “
Oxide semiconductor thin-film transistors: A review of recent advances
,”
Adv. Mater.
24
,
2945
2986
(
2012
).
11.
J.
Gan
,
X.
Lu
,
J.
Wu
,
S.
Xie
,
T.
Zhai
,
M.
Yu
,
Z.
Zhang
,
Y.
Mao
,
S. C. I.
Wang
,
Y.
Shen
, and
Y.
Tong
, “
Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes
,”
Sci. Rep.
3
,
1021
(
2013
).
12.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
, “
Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors
,”
Nature
432
,
488
492
(
2004
).
13.
H.
Hosono
, “
Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application
,”
J. Non-Cryst. Solids
352
,
851
858
(
2006
).
14.
E.
Fortunato
,
D.
Ginley
,
H.
Hosono
, and
D. C.
Paine
, “
Transparent conducting oxides for photovoltaics
,”
MRS Bull.
32
,
242
247
(
2007
).
15.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
, “
Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping
,”
J. Display Technol.
5
,
273
288
(
2009
).
16.
J. C.
Park
,
S.
Kim
,
S.
Kim
,
C.
Kim
,
I.
Song
,
Y.
Park
,
U.-I.
Jung
,
D. H.
Kim
, and
J.-S.
Lee
, “
Highly stable transparent amorphous oxide semiconductor thin-film transistors having double-stacked active layers
,”
Adv. Mater.
22
,
5512
5516
(
2010
).
17.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
, “
Present status of amorphous In–Ga-Zn–O thin-film transistors
,”
Sci. Technol. Adv. Mater.
11
,
044305
(
2010
).
18.
J. S.
Park
,
W.-J.
Maeng
,
H.-S.
Kim
, and
J.-S.
Park
, “
Review of recent developments in amorphous oxide semiconductor thin-film transistor devices
,”
Thin Solid Films
520
,
1679
1693
(
2012
).
19.
A.
Nathan
,
S.
Lee
,
S.
Jeon
, and
J.
Robertson
, “
Amorphous oxide semiconductor TFTs for displays and imaging
,”
J. Display Technol.
10
,
917
927
(
2014
).
20.
X.
Yu
,
T. J.
Marks
, and
A.
Facchetti
, “
Metal oxides for optoelectronic applications
,”
Nat. Mater.
15
,
383
396
(
2016
).
21.
W.
Cao
,
J.
Li
,
H.
Chen
, and
J.
Xue
, “
Transparent electrodes for organic optoelectronic devices: A review
,”
J. Photonics Energy
4
,
040990
(
2014
).
22.
C.
Kilic
and
A.
Zunger
, “
Origins of coexistence of conductivity and transparency in SnO2
,”
Phys. Rev. Lett.
88
,
95501
(
2002
).
23.
C. G. V.
de Walle
, “
Strategies for controlling the conductivity of wide-band-gap semiconductors
,”
Phys. Status Solidi B
229
,
221
228
(
2002
).
24.
I.
Tanaka
,
K.
Tatsumi
,
M.
Nakano
, and
H.
Adachi
, “
First-principles calculations of anion vacancies in oxides and nitrides
,”
J. Am. Ceram. Soc.
85
,
68
74
(
2002
).
25.
S.
Lany
and
A.
Zunger
, “
Dopability, intrinsic conductivity and nonstoichiometry of transparent conducting oxides
,”
Phys. Rev. Lett.
98
,
045501
(
2007
).
26.
P.
Reunchan
,
X.
Zhou
,
S.
Limpijumnong
,
A.
Janotti
, and
C. G. V.
de Walle
, “
Vacancy defects in indium oxide: An ab initio study
,”
Curr. Appl. Phys.
11
,
S296
S300
(
2011
).
27.
Q.
Hou
,
J.
Buckeridge
,
T.
Lazauskas
,
D.
Mora-Fonz
,
A. A.
Sokol
,
S. M.
Woodley
, and
C. R. A.
Catlow
, “
Defect formation in In2O3 and SnO2: A new atomistic approach based on accurate lattice energies
,”
J. Mater. Chem. C
6
,
12386
12395
(
2018
).
28.
D. B.
Buchholz
,
Q.
Ma
,
D.
Alducin
,
A.
Ponce
,
M.
Jose-Yacaman
,
R.
Khanal
,
J. E.
Medvedeva
, and
R. P. H.
Chang
, “
The structure and properties of amorphous indium oxide
,”
Chem. Mater.
26
,
5401
5411
(
2014
).
29.
M.
Kim
,
I. J.
Kang
, and
C. H.
Park
, “
First-principle study of electronic structure of Sn-doped amorphous In2O3 and the role of O-deficiency
,”
Curr. Appl. Phys.
12
,
S25
S28
(
2012
).
30.
J. E.
Medvedeva
,
D. B.
Buchholz
, and
R. P. H.
Chang
, “
Recent advances in understanding the structure and properties of amorphous oxide semiconductors
,”
Adv. Electron. Mater.
3
,
1700082
(
2017
).
31.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
32.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
14269
(
1994
).
33.
G.
Kresse
and
J.
Furthmuller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
34.
G.
Kresse
and
J.
Furthmuller
, “
Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
35.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
36.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
37.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
); Phys. Rev. Lett. 78, 1396–1396 (1997).
38.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
78
,
1396
1396
(
1997
); Phys. Rev. Lett. 77, 3865 (1996).
39.
P. E.
Blochl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
40.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
41.
D. B.
Buchholz
,
L.
Zeng
,
M. J.
Bedzyk
, and
R. P.
Chang
, “
Differences between amorphous indium oxide thin films
,”
Progr. Nat. Sci. Mater. Int.
23
,
475
480
(
2013
).
42.
R.
Hoppe
, “
The coordination number—An ‘Inorganic chameleon
,”
Angew. Chem. Int. Ed. English
9
,
25
34
(
1970
).
43.
R.
Hoppe
,
S.
Voigt
,
H.
Glaum
,
J.
Kissel
,
H. P.
Muller
, and
K.
Bernet
, “
A new route to charge distributions in ionic solids
,”
J. Less Common Met.
156
,
105
122
(
1989
).
44.
R.
Khanal
,
D. B.
Buchholz
,
R. P. H.
Chang
, and
J. E.
Medvedeva
, “
Composition-dependent structural and transport properties of amorphous transparent conducting oxides
,”
Phys. Rev. B
91
,
205203
(
2015
).
45.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
46.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
, “
Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria–Ernzerhof screened hybrid functional
,”
J. Chem. Phys.
123
,
174101
(
2005
).
47.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based bader analysis algorithm without lattice bias
,”
J. Phys. Condens. Matter
21
,
084204
(
2009
).
48.
K.
Momma
and
F.
Izumi
, “
Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
49.
J. E.
Medvedeva
,
Transparent Electronics: From Synthesis to Applications
(
John Wiley & Sons
,
2010
), pp.
1
29
.
50.
H.
Hosono
,
M.
Yasukawa
, and
H.
Kawazoe
, “
Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides
,”
J. Non-Cryst. Solids
203
,
334
344
(
1996
).
51.
S.
Narushima
,
M.
Orita
,
M.
Hirano
, and
H.
Hosono
, “
Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2CdOGeO2
,”
Phys. Rev. B
66
,
035203
(
2002
).
52.
A.
Walsh
,
J. L. F.
Da Silva
, and
S.-H.
Wei
, “
Interplay between order and disorder in the high performance of amorphous transparent conducting oxides
,”
Chem. Mater.
21
,
5119
5124
(
2009
).
53.
A.
Aliano
,
A.
Catellani
, and
G.
Cicero
, “
Characterization of amorphous In2O3: An ab initio molecular dynamics study
,”
Appl. Phys. Lett.
99
,
211913
(
2011
).
54.
Tables of Interatomic Distances and Configuration in Molecules and Ions, edited by L. Sutton (The Chemical Society, London, 1958).
55.
T.
Bakos
,
S.
Rashkeev
, and
S.
Pantelides
, “
H2O and O2 molecules in amorphous SiO2: Defect formation and annihilation mechanisms
,”
Phys. Rev. B
69
,
195206
(
2004
).
56.
Z.-X.
Gao
,
H.-S.
Kim
,
Q.
Sun
,
P. C.
Stair
, and
W. M. H.
Sachtler
, “
UV-Raman characterization of iron peroxo adsorbates on Fe/MFI catalyst with high activity for NOx reduction
,”
J. Phys. Chem. B
105
,
6186
6190
(
2001
).
57.
S. L.
Moffitt
,
Q.
Zhu
,
Q.
Ma
,
A. F.
Falduto
,
D. B.
Buchholz
,
R. P. H.
Chang
,
T. O.
Mason
,
J. E.
Medvedeva
,
T. J.
Marks
, and
M. J.
Bedzyk
, “
Probing the unique role of gallium in amorphous oxide semiconductors through structure–property relationships
,”
Adv. Electron. Mater.
3
,
1700189
(
2017
).
58.
X.
Zhang
,
B.
Wang
,
W.
Huang
,
Y.
Chen
,
G.
Wang
,
L.
Zeng
,
W.
Zhu
,
M. J.
Bedzyk
,
W.
Zhang
,
J. E.
Medvedeva
,
A.
Facchetti
, and
T. J.
Marks
, “
Synergistic boron doping of semiconductor and dielectric layers for high-performance metal oxide transistors: Interplay of experiment and theory
,”
J. Am. Chem. Soc.
140
,
12501
12510
(
2018
).
59.
W.
Huang
,
P.-H.
Chien
,
K.
McMillen
,
S.
Patel
,
J.
Tedesco
,
L.
Zeng
,
S.
Mukherjee
,
B.
Wang
,
Y.
Chen
,
G.
Wang
,
Y.
Wang
,
Y.
Gao
,
M. J.
Bedzyk
,
D. M.
DeLongchamp
,
Y.-Y.
Hu
,
J. E.
Medvedeva
,
T. J.
Marks
, and
A.
Facchetti
, “
Experimental and Theoretical Evidence for Hydrogen Doping in Polymer Solution Processed Indium Gallium Oxide
,” (unpublished).
60.
K.
Hoshino
,
D.
Hong
,
H. Q.
Chiang
, and
J. F.
Wager
, “
Constant-voltage-bias stress testing of a-IGZO thin-film transistors
,”
IEEE Trans. Electron Devices
56
,
1365
1370
(
2009
).
61.
P.
Migliorato
,
M.
Delwar Hossain Chowdhury
,
J.
Gwang Um
,
M.
Seok
, and
J.
Jang
, “
Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor
,”
Appl. Phys. Lett.
101
,
123502
(
2012
).
62.
C.-H.
Han
,
S.-S.
Kim
,
K.-R.
Kim
,
D.-H.
Baek
,
S.-S.
Kim
, and
B.-D.
Choi
, “
Effects of electron trapping and interface state generation on bias stress induced in indium–gallium–zinc oxide thin-film transistors
,”
Jpn. J. Appl. Phys.
53
,
08NG04
(
2014
).
63.
T.
Fung
,
C.
Chuang
,
K.
Nomura
,
H. D.
Shieh
,
H.
Hosono
, and
J.
Kanicki
, “
Photofield-effect in amorphous In–Ga-Zn–O (a-IGZO) thin-film transistors
,”
J. Inf. Display
9
,
21
29
(
2008
).
64.
J.
Luo
,
A.
Adler
,
T.
Mason
,
D.
Bruce Buchholz
,
R.
Chang
, and
M.
Grayson
, “
Transient photoresponse in amorphous In–Ga–Zn–O thin films under stretched exponential analysis
,”
J. Appl. Phys.
113
,
153709
(
2013
).
65.
J. K.
Jeong
, “
Photo-bias instability of metal oxide thin film transistors for advanced active matrix displays
,”
J. Mater. Res.
28
,
2071
2084
(
2013
).
66.
J.
Luo
, “Characterizing and modeling transient photo-conductivity in amorphous In–Ga-Zn–O thin films,” Ph.D. thesis (School Northwestern University, 2016).
67.
A. J.
Flewitt
and
M. J.
Powell
, “
A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination
,”
J. Appl. Phys.
115
,
134501
(
2014
).
68.
J.
Luo
and
M.
Grayson
, “
Predictive and descriptive models for transient photoconductivity in amorphous oxide semiconductors
,”
MRS Adv.
1
,
3441
3446
(
2016
).
You do not currently have access to this content.