In this work, we utilize a phase-field model to investigate electromigration-mediated defects in non-columnar polycrystalline interconnects. We find that the misalignment of the grain boundary with respect to an externally applied electric field governs the non-linear kinetics of electromigration-induced slit evolution. We explore the mechanisms by which electromigration-induced defects propagate in interconnects comprising equiaxed and randomly distributed grains. We deduce that when atomic mobility in grain boundaries (Mgb) is two orders of magnitude larger than along the surface (Ms), the defect manifests as grain boundary slits, while a smaller Mgb/Ms promotes surface drift. By the aid of an extensive parametric study, the presence of a mixed mode at intermittent values of Mgb/Ms is established. Our simulations of slit formation in a network of randomly distributed grains validate our hypothesis that grain boundary alignment and the grain size distribution determine failure rates. Finally, we found that the failure rates in 3D are several times faster than in 2D, which indicates the importance of accounting the physics of three-dimensional capillarity in the present modeling approach.

1.
H.
Ceric
and
S.
Selberherr
,
Mater. Sci. Eng. Rep.
71
,
53
(
2011
).
2.
P. S.
Ho
and
T.
Kwok
,
Rep. Prog. Phys.
52
,
301
(
1989
).
3.
A.
Mukherjee
,
K.
Ankit
,
R.
Mukherjee
, and
B.
Nestler
,
J. Electron. Mater.
45
,
6233
(
2016
).
4.
A.
Mukherjee
,
K.
Ankit
,
M.
Selzer
, and
B.
Nestler
,
Phys. Rev. Appl.
9
,
044004
(
2018
).
5.
ITRS
, “International Technology Roadmap for Semiconductors,” Technical Report, 2011.
6.
T. O.
Ogurtani
and
O.
Akyildiz
,
J. Appl. Phys.
97
,
093520
(
2005
).
7.
O.
Akyildiz
and
T.
Ogurtani
,
J. Appl. Phys.
110
,
043521
(
2011
).
8.
T. O.
Ogurtani
and
E. E.
Oren
,
J. Appl. Phys.
96
,
7246
(
2004
).
9.
W.
Li
,
C. M.
Tan
, and
Y.
Hou
,
J. Appl. Phys.
101
,
104314
(
2007
).
10.
C.
Basaran
and
M.
Lin
,
Int. J. Mater. Struct. Integr.
1
,
016039
(
2007
).
11.
K.
Croes
,
Y.
Li
,
M.
Lofrano
,
C. J.
Wilson
, and
Z.
Tokei
, in
2013 IEEE International Reliability Physics Symposium (IRPS)
(IEEE, 2013), pp. 2C.3.1–2C.3.4.
12.
F.
He
and
C. M.
Tan
,
World J. Model. Simul.
8
,
271284
(
2012
).
13.
S.
Chakraborty
,
P.
Kumar
, and
A.
Choudhury
,
Acta Mater.
153
,
377
(
2018
).
14.
C. K.
Hu
,
R.
Rosenberg
, and
K. Y.
Lee
,
Appl. Phys. Lett.
74
,
2945
(
1999
).
15.
D. A.
Porter
,
K. E.
Easterling
, and
M.
Youssef Abdelraouf Sherif
,
Phase Transformations in Metals and Alloys
(
CRC Press
,
2009
).
16.
E.
Baibuz
,
S.
Vigonski
,
J.
Lahtinen
,
J.
Zhao
,
V.
Jansson
,
V.
Zadin
, and
F.
Djurabekova
,
Comp. Mater. Sci.
146
,
287
(
2018
).
17.
D.
Contestable-Gilkes
,
D.
Ramappa
,
M.
Oh
, and
S. M.
Merchant
,
J. Electron. Mater.
31
,
1047
(
2002
).
18.
E.
Glickman
and
M.
Nathan
,
J. Appl. Phys.
80
,
3782
(
1996
).
19.
M. S.
Park
and
R.
Arróyave
,
Acta Mater.
58
,
4900
(
2010
).
20.
M. S.
Park
,
S. L.
Gibbons
, and
R.
Arróyave
,
Acta Mater.
61
,
7142
(
2013
).
21.
M.
Mahadevan
and
R.
Bradley
,
Phys. Rev. B
59
,
11037
(
1999
).
22.
J.
Santoki
,
A.
Mukherjee
,
D.
Schneider
,
M.
Selzer
, and
B.
Nestler
,
J. Electron. Mater.
48
,
182
(
2019
).
23.
L.
Klinger
and
L.
Levin
,
J. Appl. Phys.
78
,
1669
(
1995
).
24.
A. F.
Bower
and
S.
Shankar
,
Mod. Sim. Mater. Sci. Eng.
15
,
923
(
2007
).
25.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1958
).
26.
J. W.
Cahn
,
Acta Metall. Mater.
9
,
795
(
1961
).
27.
S. M.
Allen
and
J. W.
Cahn
,
Acta Metall. Mater.
27
,
1085
(
1979
).
28.
M.
Nathan
,
E.
Glickman
,
M.
Khenner
,
A.
Averbuch
, and
M.
Israeli
,
Appl. Phys. Lett.
77
,
3355
(
2000
).
29.
M.
Khenner
,
A.
Averbuch
,
M.
Israeli
,
M.
Nathan
, and
E.
Glickman
,
Comput. Mater. Sci.
20
,
235
(
2001
).
You do not currently have access to this content.