Current interest in dispersion strategies for nanoparticle fillers is driving research into covalently attached polymer brushes. The primary need for these “hairy nanoparticles” is for testing and developing new technologies based on polymer nanocomposites. To that end, we have prepared polymer nanocomposites with covalently tethered chains on a naturally occurring montmorillonite clay template via a metal-mediated surface-initiated ring opening metathesis polymerization approach. The nanocomposites were characterized in terms of polymer:clay composition and of various chain architecture parameters such as molecular weight, polydispersity index, and grafting density.

1.
M.
van der Waarden
, “
Stabilization of carbon-black dispersions in hydrocarbons
,”
J. Colloid Sci.
5
,
317
325
(
1950
).
2.
E. L.
Mackor
, “
A theoretical approach of the colloid-chemical stability of dispersions in hydrocarbons
,”
J. Colloid Sci.
6
,
492
495
(
1951
).
3.
M.
van der Waarden
, “
Adsorption of aromatic hydrocarbons in nonaromatic media on carbon black
,”
J. Colloid Sci.
6
,
443
449
(
1951
).
4.
E. J.
Clayfield
and
E. C.
Lumb
, “
A theoretical approach to polymeric dispersant action. I. Calculation of entropic repulsion exerted by random polymer chains terminally adsorbed on plane surfaces and spherical particles
,”
J. Colloid Interface Sci.
22
,
269
(
1966
).
5.
E.
Raphael
and
P. G.
De Gennes
, “
Rubber-rubber adhesion with connector molecules
,”
J. Phys. Chem.
96
,
4002
4007
(
1992
).
6.
H.
Ji
and
P. G.
De Gennes
, “
Adhesion via connector molecules: The many-stitch problem
,”
Macromolecules
26
,
520
525
(
1993
).
7.
S. T.
Milner
, “
Polymer brushes
,”
Science
251
,
905
914
(
1991
).
8.
M.
Amiji
and
K.
Park
, “
Surface modification of polymeric biomaterials with poly (ethylene oxide), albumin, and heparin for reduced thrombogenicity
,”
J. Biomater. Sci. Polym. Ed.
4
,
217
234
(
1993
).
9.
B.
Zhao
and
W. J.
Brittain
, “
Polymer brushes: Surface-immobilized macromolecules
,”
Prog. Polym. Sci.
25
,
677
710
(
2000
).
10.
T.
Wu
,
K.
Efimenko
, and
J.
Genzer
, “
Combinatorial study of the mushroom-to-brush crossover in surface anchored polyacrylamide
,”
J. Am. Chem. Soc.
124
,
9394
9395
(
2002
).
11.
R.
Advincula
, “Polymer brushes by anionic and cationic surface-initiated polymerization (SIP),” in Surface-Initiated Polymerization I (Springer-Verlag, Berlin, 2006).
12.
X.
Fan
,
Q.
Zhou
,
C.
Xia
,
W.
Cristofoli
,
J.
Mays
, and
R. C.
Advincula
, “
Living anionic surface-initiated polymerization (LASIP) of styrene from clay nanoparticles using surface bound 1, 1-diphenylethylene (DPE) initiators
,”
Langmuir
18
,
45114518
(
2002
).
13.
Q.
Zhou
,
X.
Fan
,
C.
Xia
,
J.
Mays
, and
R.
Advincula
, “
Living anionic surface initiated polymerization (SIP) of styrene from clay surfaces
,”
Chem. Mater.
13
,
2465
2467
(
2001
).
14.
M. A.
Jordi
and
T. A. P.
Seery
, “
Quantitative determination of the chemical composition of silica-poly(norbornene) nanocomposites
,”
J. Am. Chem. Soc.
127
,
4416
4422
(
2005
).
15.
M.
Ejaz
,
Y.
Tsujii
, and
T.
Fukuda
, “
Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization
,”
Polymer
42
,
6811
6815
(
2001
).
16.
X.
Fan
,
C.
Xia
,
T.
Fulghum
,
M. K.
Park
,
J.
Locklin
, and
R. C.
Advincula
, “
Polymer brushes grafted from clay nanoparticles adsorbed on a planar substrate by free radical surface-initiated polymerization
,”
Langmuir
19
,
916
923
(
2002
).
17.
R.
Ranjan
and
W. J.
Brittain
, “
Synthesis of high density polymer brushes on nanoparticles by combined RAFT polymerization and click chemistry
,”
Macromol. Rapid Commun.
29
,
1104
1110
(
2008
).
18.
H. G.
Börner
,
K.
Beers
,
K.
Matyjaszewski
,
S. S.
Sheiko
, and
M.
Moller
, “
Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerization
,”
Macromolecules
34
,
4375
4383
(
2001
).
19.
R.
Guino
,
I. L.
Lagadic
, and
T. A. P.
Seery
, “Polymer nanocomposites from silica nanowafers,” in Abstracts of Papers of the American Chemical Society (American Chemical Society, 2005), Vol. 229, p. 508.
20.
M. S.
Yavuz
,
G. C.
Jensen
,
D. P.
Penaloza
,
T. A. P.
Seery
,
S. A.
Pendergraph
,
J. F.
Rusling
, and
G. A.
Sotzing
, “
Gold nanoparticles with externally controlled, reversible shifts of local surface plasmon resonance bands
,”
Langmuir
25
,
13120
13124
(
2009
).
21.
G.
Boven
,
M. L.
Oosterling
,
G.
Challa
, and
A.
Jan Schouten
, “
Grafting kinetics of poly (methyl methacrylate) on microparticulate silica
,”
Polymer
31
,
2377
2383
(
1990
).
22.
E.
Carlier
,
A.
Guyot
, and
A.
Revillon
, “
Functional polymers supported on porous silica. II. Radical polymerization of vinylbenzyl chloride from grafted precursors
,”
React. Polym.
16
,
115
124
(
1992
).
23.
O.
Prucker
and
J.
Ruhe
, “
Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators
,”
Macromolecules
31
,
592
601
(
1998
).
24.
M.
Biesalski
and
J.
Rühe
, “
Synthesis of a poly (p-styrenesulfonate) brush via surface-initiated polymerization
,”
Macromolecules
36
,
1222
1227
(
2003
).
25.
H.
Böttcher
,
M. L.
Hallensleben
,
S.
Nuß
,
H.
Wurm
,
J.
Bauer
, and
P.
Behrens
, “
Organic/inorganic hybrids by ‘living’/controlled ATRP grafting from layered silicates
,”
J. Mater. Chem.
12
,
1351
1354
. (
2002
).
26.
M. R.
Xie
,
J. Y.
Dang
,
J. X.
Shi
,
H. J.
Han
,
C.
Ng
, and
W.
Huang
, “
Synthesis and self-assembly of well-defined polymer brushes with high grafting density of hydrophobic poly (e-caprolactone) and hydrophilic poly (2-(dimethylamino) ethyl methacrylate) side chains
,”
Acta Chim. Sinica
67
,
869
874
(
2009
).
27.
S.
Minko
,
S.
Patil
,
V.
Datsyuk
,
F.
Simon
,
K. J.
Eichhorn
,
M.
Motornov
,
D.
Usov
,
I.
Tokarev
, and
M.
Stamm
, “
Synthesis of adaptive polymer brushes via “grafting to” approach from melt
,”
Langmuir
18
,
289
296
(
2002
).
28.
O.
Burtovyy
,
V.
Klep
,
H. C.
Chen
,
R. K.
Hu
,
C. C.
Lin
, and
I.
Luzinov
, “
Hydrophobic modification of polymer surfaces via “grafting to” approach
,”
J. Macromol. Sci. B
46
,
137
154
(
2007
).
29.
H.
Huang
and
L. S.
Penn
, “
Dense tethered layers by the “grafting-to” approach
,”
Macromolecules
38
,
4837
4843
(
2005
).
30.
R.
Jordan
,
A.
Ulman
,
J. F.
Kang
,
M. H.
Rafailovich
, and
J.
Sokolov
, “
Surface-initiated anionic polymerization of styrene by means of self-assembled monolayers
,”
J. Am. Chem. Soc.
121
,
1016
1022
(
1999
).
31.
K.
Matyjaszewski
and
J.
Xia
, “
Atom transfer radical polymerization
,”
Chem. Rev.
101
,
2921
2990
(
2001
).
32.
S.
Edmondson
,
V. L.
Osborne
, and
W. T.
Huck
, “
Polymer brushes via surface-initiated polymerizations
,”
Chem. Soc. Rev.
33
,
14
22
(
2004
).
33.
M.
Karesoja
,
H.
Jokinen
,
E.
Karjalainen
,
P.
Pulkkinen
,
M.
Torkkeli
,
A.
Soininen
,
J.
Ruokolainen
, and
H.
Tenhu
, “
Grafting of montmorillonite nano-clay with butyl acrylate and methyl methacrylate by atom transfer radical polymerization: Blends with poly (BuA-co-MMA)
,”
J. Polym. Sci. A Polym. Chem.
47
,
3086
3097
(
2009
).
34.
K.
Matyjaszewski
,
P. J.
Miller
,
N.
Shukla
,
B.
Immaraporn
,
A.
Gelman
,
B. B.
Luokala
,
T. M.
Siclovan
,
G.
Kickelbick
,
T.
Vallant
,
H.
Hoffmann
, and
T.
Pakula
, “
Polymers at interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator
,”
Macromolecules
32
,
8716
8724
(
1999
).
35.
A.
Mizutani
,
A.
Kikuchi
,
M.
Yamato
,
H.
Kanazawa
, and
T.
Okano
, “
Preparation of thermoresponsive polymer brush surfaces and their interaction with cells
,”
Biomaterials
29
,
2073
2081
(
2008
).
36.
T.
Tsukagoshi
,
Y.
Kondo
, and
N.
Yoshino
, “
Protein adsorption on polymer-modified silica particle surface
,”
Colloids Surf. B Biointerfaces
54
,
101
107
(
2007
).
37.
H.
Wang
,
M.
Peng
,
J.
Zheng
, and
P.
Li
, “
Encapsulation of silica nanoparticles by redox-initiated graft polymerization from the surface of silica nanoparticles
,”
J. Colloid Inter. Sci.
326
,
151
157
(
2008
).
38.
P. A.
Wheeler
,
J.
Wang
, and
L. J.
Mathias
, “
Poly(methyl methacrylate)/laponite nanocomposites: Exploring covalent and ionic clay modifications
,”
Chem. Mater.
18
,
3937
3945
(
2006
).
39.
F. J.
Xu
,
S. P.
Zhong
,
L. Y. L.
Yung
,
E. T.
Kang
, and
K. G.
Neoh
, “
Surface-active and stimuli-responsive polymer–Si (100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion
,”
Biomacromolecules
5
,
2392
2403
(
2004
).
40.
Z.
Yenice
,
M. A.
Tasdelen
,
A.
Oral
,
C.
Guler
, and
Y.
Yagci
, “
Poly(styrene-b-tetrahydrofuran)/clay nanocomposites by mechanistic transformation
,”
J. Polym. Sci. A Polym. Chem.
47
,
2190
2197
(
2009
).
41.
G.
Pan
,
Y.
Zhang
,
X.
Guo
,
C.
Li
, and
H.
Zhang
, “
An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization
,”
Biosens. Bioelectron.
26
,
976
982
(
2010
).
42.
J.
Liu
,
W.
Yang
,
H. M.
Zareie
,
J. J.
Gooding
, and
T. P.
Davis
, “
pH-detachable polymer brushes formed using titanium-diol coordination chemistry and living radical polymerization (RAFT)
,”
Macromolecules
42
,
2931
2939
(
2009
).
43.
M. D.
Rowe
,
B. A.
Hammer
, and
S. G.
Boyes
, “
Synthesis of surface-initiated stimuli-responsive diblock copolymer brushes utilizing a combination of ATRP and RAFT polymerization techniques
,”
Macromolecules
41
,
4147
4157
(
2008
).
44.
X.
Pei
,
W.
Liu
, and
J.
Hao
, “
Functionalization of multiwalled carbon nanotube via surface reversible addition fragmentation chain transfer polymerization and as lubricant additives
,”
J. Polym. Sci. A Polym. Chem.
46
,
3014
3023
(
2008
).
45.
G.
Xu
,
Y.
Wang
,
W.
Pang
,
W. T.
Wu
,
Q.
Zhu
, and
P.
Wang
, “
Fabrication of multiwalled carbon nanotubes with polymer shells through surface RAFT polymerization
,”
Polym. Int.
56
,
847
852
(
2007
).
46.
K.
Yuan
,
Z. F.
Li
,
L.
Ling-Ling
, and
X. N.
Shi
, “
Synthesis and characterization of well-defined polymer brushes grafted from silicon surface via surface reversible addition–fragmentation chain transfer (RAFT) polymerization
,”
Mater. Lett.
61
,
2033
2036
(
2007
).
47.
B. Q.
Zhang
,
C. Y.
Pan
,
C. Y.
Hong
,
B.
Luan
, and
P. J.
Shi
, “
Reversible addition-fragmentation transfer polymerization in the presence of MMT immobilized amphoteric RAFT agent
,”
Macromol. Rapid Commun.
27
,
97
102
(
2006
).
48.
Y.
Xia
,
J. A.
Kornfield
, and
R. H.
Grubbs
, “
Efficient synthesis of narrowly dispersed brush polymers via living ring-opening metathesis polymerization of macromonomers
,”
Macromolecules
42
,
3761
3766
(
2009
).
49.
M.
Xie
,
J.
Dang
,
H.
Han
,
W.
Wang
,
J.
Liu
,
X.
He
, and
Y.
Zhang
, “
Well-defined brush copolymers with high grafting density of amphiphilic side chains by combination of ROP, ROMP, and ATRP
,”
Macromolecules
41
,
9004
9010
(
2008
).
50.
J.
Feng
,
S. S.
Stoddart
,
K. A.
Weerakoon
, and
W.
Chen
, “
An efficient approach to surface-initiated ring-opening metathesis polymerization of cyclooctadiene
,”
Langmuir
23
,
1004
(
2007
).
51.
D. P.
Penaloza
,
D. J.
Sandberg
,
M. V.
Giotto
, and
T. A. P.
Seery
, “
An exfoliated clay-poly (norbornene) nanocomposite prepared by metal-mediated surface-initiated polymerization
,”
Polym. Eng. Sci.
55
,
2349
(
2015
).
52.
K. M.
Steel
,
J.
Besida
,
T. A.
O'Donnell
, and
D. G.
Wood
, “
Production of ultra clean coal: Part I—Dissolution behaviour of mineral matter in black coal toward hydrochloric and hydrofluoric acids
,”
Fuel Process. Technol.
70
,
171
192
(
2001
).
53.
M.
Scholl
,
S.
Ding
,
C. W.
Lee
, and
R. H.
Grubbs
, “
Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1, 3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands
,”
Org. Lett.
1
,
953
956
(
1999
).
54.
C. W.
Bielawski
and
R. H.
Grubbs
, “
Living ring-opening metathesis polymerization
,”
Prog. Polym. Sci.
32
,
1
29
(
2007
).
55.
K.
Matyjaszewski
, “
Ranking living systems
,”
Macromolecules
26
,
1787
1788
(
1993
).
56.
J. P.
Wittmer
,
M. E.
Cates
,
A.
Johner
, and
M. S.
Turner
, “
Diffusive growth of a polymer layer by in situ polymerization
,”
Europhys. Lett.
33
, 397 (
1996
).
57.
T.
von Werne
and
T. E.
Patten
, “
Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces
,”
J. Am. Chem. Soc.
123
,
7497
7505
(
2001
).
58.
S.
Yamamoto
,
M.
Ejaz
,
Y.
Tsujii
, and
T.
Fukuda
, “
Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density
,”
Macromolecules
33
,
5608
5612
(
2000
).
59.
R. G.
Jones
and
S. J.
Holder
, “
A convenient route to poly (methylphenylsilane)-graft-polystyrene copolymers
,”
J. Macromol. Chem. Phys.
198
,
3571
3579
(
1997
).
60.
Y.
He
,
X.
Pang
,
B.
Jiang
,
C.
Feng
,
Y.-W.
Harn
,
Y.
Chen
,
Y. J.
Yoon
,
S.
Pan
,
C.-H.
Lu
,
Y.
Chang
,
M.
Zebarjadi
,
Z.
Kang
,
N.
Thadhani
,
J.
Peng
, and
Z.
Lin
, “
Unconventional route to uniform hollow semiconducting nanoparticles with tailorable dimensions, compositions, surface chemistry, and near-infrared absorption
,”
Angew. Chem.
56
(
42
),
12946
12951
(
2017
).
61.
J.
Pribyl
,
B.
Benicewicz
,
M.
Bell
,
K.
Wagener
,
X.
Ning
,
L.
Schadler
,
A.
Jimenez
, and
S.
Kumar
, “
Polyethylene grafted silica nanoparticles prepared via surface-initiated ROMP
,”
ACS Macro Lett.
8
(
3
),
228
232
(
2019
).
You do not currently have access to this content.