Current interest in dispersion strategies for nanoparticle fillers is driving research into covalently attached polymer brushes. The primary need for these “hairy nanoparticles” is for testing and developing new technologies based on polymer nanocomposites. To that end, we have prepared polymer nanocomposites with covalently tethered chains on a naturally occurring montmorillonite clay template via a metal-mediated surface-initiated ring opening metathesis polymerization approach. The nanocomposites were characterized in terms of polymer:clay composition and of various chain architecture parameters such as molecular weight, polydispersity index, and grafting density.
REFERENCES
1.
M.
van der Waarden
, “Stabilization of carbon-black dispersions in hydrocarbons
,” J. Colloid Sci.
5
, 317
–325
(1950
). 2.
E. L.
Mackor
, “A theoretical approach of the colloid-chemical stability of dispersions in hydrocarbons
,” J. Colloid Sci.
6
, 492
–495
(1951
). 3.
M.
van der Waarden
, “Adsorption of aromatic hydrocarbons in nonaromatic media on carbon black
,” J. Colloid Sci.
6
, 443
–449
(1951
). 4.
E. J.
Clayfield
and E. C.
Lumb
, “A theoretical approach to polymeric dispersant action. I. Calculation of entropic repulsion exerted by random polymer chains terminally adsorbed on plane surfaces and spherical particles
,” J. Colloid Interface Sci.
22
, 269
(1966
). 5.
E.
Raphael
and P. G.
De Gennes
, “Rubber-rubber adhesion with connector molecules
,” J. Phys. Chem.
96
, 4002
–4007
(1992
). 6.
H.
Ji
and P. G.
De Gennes
, “Adhesion via connector molecules: The many-stitch problem
,” Macromolecules
26
, 520
–525
(1993
). 7.
S. T.
Milner
, “Polymer brushes
,” Science
251
, 905
–914
(1991
). 8.
M.
Amiji
and K.
Park
, “Surface modification of polymeric biomaterials with poly (ethylene oxide), albumin, and heparin for reduced thrombogenicity
,” J. Biomater. Sci. Polym. Ed.
4
, 217
–234
(1993
). 9.
B.
Zhao
and W. J.
Brittain
, “Polymer brushes: Surface-immobilized macromolecules
,” Prog. Polym. Sci.
25
, 677
–710
(2000
). 10.
T.
Wu
, K.
Efimenko
, and J.
Genzer
, “Combinatorial study of the mushroom-to-brush crossover in surface anchored polyacrylamide
,” J. Am. Chem. Soc.
124
, 9394
–9395
(2002
). 11.
R.
Advincula
, “Polymer brushes by anionic and cationic surface-initiated polymerization (SIP),” in Surface-Initiated Polymerization I (Springer-Verlag, Berlin, 2006).12.
X.
Fan
, Q.
Zhou
, C.
Xia
, W.
Cristofoli
, J.
Mays
, and R. C.
Advincula
, “Living anionic surface-initiated polymerization (LASIP) of styrene from clay nanoparticles using surface bound 1, 1-diphenylethylene (DPE) initiators
,” Langmuir
18
, 45114518
(2002
). 13.
Q.
Zhou
, X.
Fan
, C.
Xia
, J.
Mays
, and R.
Advincula
, “Living anionic surface initiated polymerization (SIP) of styrene from clay surfaces
,” Chem. Mater.
13
, 2465
–2467
(2001
). 14.
M. A.
Jordi
and T. A. P.
Seery
, “Quantitative determination of the chemical composition of silica-poly(norbornene) nanocomposites
,” J. Am. Chem. Soc.
127
, 4416
–4422
(2005
). 15.
M.
Ejaz
, Y.
Tsujii
, and T.
Fukuda
, “Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization
,” Polymer
42
, 6811
–6815
(2001
). 16.
X.
Fan
, C.
Xia
, T.
Fulghum
, M. K.
Park
, J.
Locklin
, and R. C.
Advincula
, “Polymer brushes grafted from clay nanoparticles adsorbed on a planar substrate by free radical surface-initiated polymerization
,” Langmuir
19
, 916
–923
(2002
). 17.
R.
Ranjan
and W. J.
Brittain
, “Synthesis of high density polymer brushes on nanoparticles by combined RAFT polymerization and click chemistry
,” Macromol. Rapid Commun.
29
, 1104
–1110
(2008
). 18.
H. G.
Börner
, K.
Beers
, K.
Matyjaszewski
, S. S.
Sheiko
, and M.
Moller
, “Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerization
,” Macromolecules
34
, 4375
–4383
(2001
). 19.
R.
Guino
, I. L.
Lagadic
, and T. A. P.
Seery
, “Polymer nanocomposites from silica nanowafers,” in Abstracts of Papers of the American Chemical Society (American Chemical Society, 2005), Vol. 229, p. 508.20.
M. S.
Yavuz
, G. C.
Jensen
, D. P.
Penaloza
, T. A. P.
Seery
, S. A.
Pendergraph
, J. F.
Rusling
, and G. A.
Sotzing
, “Gold nanoparticles with externally controlled, reversible shifts of local surface plasmon resonance bands
,” Langmuir
25
, 13120
–13124
(2009
). 21.
G.
Boven
, M. L.
Oosterling
, G.
Challa
, and A.
Jan Schouten
, “Grafting kinetics of poly (methyl methacrylate) on microparticulate silica
,” Polymer
31
, 2377
–2383
(1990
). 22.
E.
Carlier
, A.
Guyot
, and A.
Revillon
, “Functional polymers supported on porous silica. II. Radical polymerization of vinylbenzyl chloride from grafted precursors
,” React. Polym.
16
, 115
–124
(1992
). 23.
O.
Prucker
and J.
Ruhe
, “Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators
,” Macromolecules
31
, 592
–601
(1998
). 24.
M.
Biesalski
and J.
Rühe
, “Synthesis of a poly (p-styrenesulfonate) brush via surface-initiated polymerization
,” Macromolecules
36
, 1222
–1227
(2003
). 25.
H.
Böttcher
, M. L.
Hallensleben
, S.
Nuß
, H.
Wurm
, J.
Bauer
, and P.
Behrens
, “Organic/inorganic hybrids by ‘living’/controlled ATRP grafting from layered silicates
,” J. Mater. Chem.
12
, 1351
–1354
. (2002
). 26.
M. R.
Xie
, J. Y.
Dang
, J. X.
Shi
, H. J.
Han
, C.
Ng
, and W.
Huang
, “Synthesis and self-assembly of well-defined polymer brushes with high grafting density of hydrophobic poly (e-caprolactone) and hydrophilic poly (2-(dimethylamino) ethyl methacrylate) side chains
,” Acta Chim. Sinica
67
, 869
–874
(2009
).27.
S.
Minko
, S.
Patil
, V.
Datsyuk
, F.
Simon
, K. J.
Eichhorn
, M.
Motornov
, D.
Usov
, I.
Tokarev
, and M.
Stamm
, “Synthesis of adaptive polymer brushes via “grafting to” approach from melt
,” Langmuir
18
, 289
–296
(2002
). 28.
O.
Burtovyy
, V.
Klep
, H. C.
Chen
, R. K.
Hu
, C. C.
Lin
, and I.
Luzinov
, “Hydrophobic modification of polymer surfaces via “grafting to” approach
,” J. Macromol. Sci. B
46
, 137
–154
(2007
). 29.
H.
Huang
and L. S.
Penn
, “Dense tethered layers by the “grafting-to” approach
,” Macromolecules
38
, 4837
–4843
(2005
). 30.
R.
Jordan
, A.
Ulman
, J. F.
Kang
, M. H.
Rafailovich
, and J.
Sokolov
, “Surface-initiated anionic polymerization of styrene by means of self-assembled monolayers
,” J. Am. Chem. Soc.
121
, 1016
–1022
(1999
). 31.
K.
Matyjaszewski
and J.
Xia
, “Atom transfer radical polymerization
,” Chem. Rev.
101
, 2921
–2990
(2001
). 32.
S.
Edmondson
, V. L.
Osborne
, and W. T.
Huck
, “Polymer brushes via surface-initiated polymerizations
,” Chem. Soc. Rev.
33
, 14
–22
(2004
). 33.
M.
Karesoja
, H.
Jokinen
, E.
Karjalainen
, P.
Pulkkinen
, M.
Torkkeli
, A.
Soininen
, J.
Ruokolainen
, and H.
Tenhu
, “Grafting of montmorillonite nano-clay with butyl acrylate and methyl methacrylate by atom transfer radical polymerization: Blends with poly (BuA-co-MMA)
,” J. Polym. Sci. A Polym. Chem.
47
, 3086
–3097
(2009
). 34.
K.
Matyjaszewski
, P. J.
Miller
, N.
Shukla
, B.
Immaraporn
, A.
Gelman
, B. B.
Luokala
, T. M.
Siclovan
, G.
Kickelbick
, T.
Vallant
, H.
Hoffmann
, and T.
Pakula
, “Polymers at interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator
,” Macromolecules
32
, 8716
–8724
(1999
). 35.
A.
Mizutani
, A.
Kikuchi
, M.
Yamato
, H.
Kanazawa
, and T.
Okano
, “Preparation of thermoresponsive polymer brush surfaces and their interaction with cells
,” Biomaterials
29
, 2073
–2081
(2008
). 36.
T.
Tsukagoshi
, Y.
Kondo
, and N.
Yoshino
, “Protein adsorption on polymer-modified silica particle surface
,” Colloids Surf. B Biointerfaces
54
, 101
–107
(2007
). 37.
H.
Wang
, M.
Peng
, J.
Zheng
, and P.
Li
, “Encapsulation of silica nanoparticles by redox-initiated graft polymerization from the surface of silica nanoparticles
,” J. Colloid Inter. Sci.
326
, 151
–157
(2008
). 38.
P. A.
Wheeler
, J.
Wang
, and L. J.
Mathias
, “Poly(methyl methacrylate)/laponite nanocomposites: Exploring covalent and ionic clay modifications
,” Chem. Mater.
18
, 3937
–3945
(2006
). 39.
F. J.
Xu
, S. P.
Zhong
, L. Y. L.
Yung
, E. T.
Kang
, and K. G.
Neoh
, “Surface-active and stimuli-responsive polymer–Si (100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion
,” Biomacromolecules
5
, 2392
–2403
(2004
). 40.
Z.
Yenice
, M. A.
Tasdelen
, A.
Oral
, C.
Guler
, and Y.
Yagci
, “Poly(styrene-b-tetrahydrofuran)/clay nanocomposites by mechanistic transformation
,” J. Polym. Sci. A Polym. Chem.
47
, 2190
–2197
(2009
). 41.
G.
Pan
, Y.
Zhang
, X.
Guo
, C.
Li
, and H.
Zhang
, “An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization
,” Biosens. Bioelectron.
26
, 976
–982
(2010
). 42.
J.
Liu
, W.
Yang
, H. M.
Zareie
, J. J.
Gooding
, and T. P.
Davis
, “pH-detachable polymer brushes formed using titanium-diol coordination chemistry and living radical polymerization (RAFT)
,” Macromolecules
42
, 2931
–2939
(2009
). 43.
M. D.
Rowe
, B. A.
Hammer
, and S. G.
Boyes
, “Synthesis of surface-initiated stimuli-responsive diblock copolymer brushes utilizing a combination of ATRP and RAFT polymerization techniques
,” Macromolecules
41
, 4147
–4157
(2008
). 44.
X.
Pei
, W.
Liu
, and J.
Hao
, “Functionalization of multiwalled carbon nanotube via surface reversible addition fragmentation chain transfer polymerization and as lubricant additives
,” J. Polym. Sci. A Polym. Chem.
46
, 3014
–3023
(2008
). 45.
G.
Xu
, Y.
Wang
, W.
Pang
, W. T.
Wu
, Q.
Zhu
, and P.
Wang
, “Fabrication of multiwalled carbon nanotubes with polymer shells through surface RAFT polymerization
,” Polym. Int.
56
, 847
–852
(2007
). 46.
K.
Yuan
, Z. F.
Li
, L.
Ling-Ling
, and X. N.
Shi
, “Synthesis and characterization of well-defined polymer brushes grafted from silicon surface via surface reversible addition–fragmentation chain transfer (RAFT) polymerization
,” Mater. Lett.
61
, 2033
–2036
(2007
). 47.
B. Q.
Zhang
, C. Y.
Pan
, C. Y.
Hong
, B.
Luan
, and P. J.
Shi
, “Reversible addition-fragmentation transfer polymerization in the presence of MMT immobilized amphoteric RAFT agent
,” Macromol. Rapid Commun.
27
, 97
–102
(2006
). 48.
Y.
Xia
, J. A.
Kornfield
, and R. H.
Grubbs
, “Efficient synthesis of narrowly dispersed brush polymers via living ring-opening metathesis polymerization of macromonomers
,” Macromolecules
42
, 3761
–3766
(2009
). 49.
M.
Xie
, J.
Dang
, H.
Han
, W.
Wang
, J.
Liu
, X.
He
, and Y.
Zhang
, “Well-defined brush copolymers with high grafting density of amphiphilic side chains by combination of ROP, ROMP, and ATRP
,” Macromolecules
41
, 9004
–9010
(2008
). 50.
J.
Feng
, S. S.
Stoddart
, K. A.
Weerakoon
, and W.
Chen
, “An efficient approach to surface-initiated ring-opening metathesis polymerization of cyclooctadiene
,” Langmuir
23
, 1004
(2007
). 51.
D. P.
Penaloza
, D. J.
Sandberg
, M. V.
Giotto
, and T. A. P.
Seery
, “An exfoliated clay-poly (norbornene) nanocomposite prepared by metal-mediated surface-initiated polymerization
,” Polym. Eng. Sci.
55
, 2349
(2015
). 52.
K. M.
Steel
, J.
Besida
, T. A.
O'Donnell
, and D. G.
Wood
, “Production of ultra clean coal: Part I—Dissolution behaviour of mineral matter in black coal toward hydrochloric and hydrofluoric acids
,” Fuel Process. Technol.
70
, 171
–192
(2001
). 53.
M.
Scholl
, S.
Ding
, C. W.
Lee
, and R. H.
Grubbs
, “Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1, 3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands
,” Org. Lett.
1
, 953
–956
(1999
). 54.
C. W.
Bielawski
and R. H.
Grubbs
, “Living ring-opening metathesis polymerization
,” Prog. Polym. Sci.
32
, 1
–29
(2007
). 55.
K.
Matyjaszewski
, “Ranking living systems
,” Macromolecules
26
, 1787
–1788
(1993
). 56.
J. P.
Wittmer
, M. E.
Cates
, A.
Johner
, and M. S.
Turner
, “Diffusive growth of a polymer layer by in situ polymerization
,” Europhys. Lett.
33
, 397 (1996
). 57.
T.
von Werne
and T. E.
Patten
, “Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces
,” J. Am. Chem. Soc.
123
, 7497
–7505
(2001
). 58.
S.
Yamamoto
, M.
Ejaz
, Y.
Tsujii
, and T.
Fukuda
, “Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density
,” Macromolecules
33
, 5608
–5612
(2000
). 59.
R. G.
Jones
and S. J.
Holder
, “A convenient route to poly (methylphenylsilane)-graft-polystyrene copolymers
,” J. Macromol. Chem. Phys.
198
, 3571
–3579
(1997
). 60.
Y.
He
, X.
Pang
, B.
Jiang
, C.
Feng
, Y.-W.
Harn
, Y.
Chen
, Y. J.
Yoon
, S.
Pan
, C.-H.
Lu
, Y.
Chang
, M.
Zebarjadi
, Z.
Kang
, N.
Thadhani
, J.
Peng
, and Z.
Lin
, “Unconventional route to uniform hollow semiconducting nanoparticles with tailorable dimensions, compositions, surface chemistry, and near-infrared absorption
,” Angew. Chem.
56
(42
), 12946
–12951
(2017
). 61.
J.
Pribyl
, B.
Benicewicz
, M.
Bell
, K.
Wagener
, X.
Ning
, L.
Schadler
, A.
Jimenez
, and S.
Kumar
, “Polyethylene grafted silica nanoparticles prepared via surface-initiated ROMP
,” ACS Macro Lett.
8
(3
), 228
–232
(2019
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.