In this work, the structure, elastic, and electronic properties of the recently synthesized MAX phase Lu2SnC under pressure were studied by the first-principle calculation. The effect of high pressures, up to 20 GPa, on the structure shows that the compressibility along the a-axis was higher than that along the c-axis, which indicates that the Lu–C bonds are more resistant than Lu–Sn bonds. Meanwhile, we derived the elastic modulus (B, G, Y), Pugh’s ratio (G/B), Poisson’s ratio (ν), and averaged compressibility (β). The value of bulk moduli, Young’s moduli, and shear moduli increases under pressure, which means that the pressure can enhance the ability of resisting to shape change and improve the stiffness and hardness of Lu2SnC. Poisson’s ratio change from 0.184 to 0.246 in the 0–20 Gpa pressure range, which means that Lu2SnC is brittle in nature, this result is consistent with that obtained from the Cauchy pressure and Pugh’s ratio. In addition, we calculated the shear anisotropy factor (A), Ai (i = 1,2,3), AB, and AG. We found that the elastic anisotropy increases with increasing pressure. Finally, the electronic properties of Lu2SnC were calculated. As the pressure increases, a pseudo-gap appears in the energy range of 2eV to 3eV. The total density of state at the Fermi level remains virtually unchanged with the increasing pressure. We hope that our study can complement the future experimental and theoretical work, which can lead to further insights.

1.
M. A.
Hadi
,
N.
Kelaidis
,
S. H.
Naqib
,
A.
Chroneos
, and
A. K. M. A.
Islam
,
Comput. Mater. Sci.
168
,
203
212
(
2019
).
2.
M. A.
Ghebouli
,
B.
Ghebouli
,
M.
Fatmi
, and
A.
Bouhemadou
,
Intermetallics
19
,
1936
1942
(
2011
).
3.
M.
Romero
and
R.
Escamilla
,
Comput. Mater. Sci.
55
,
142
146
(
2012
).
4.
I. R.
Shein
and
A. L.
Ivanovskii
,
Physica B
410
,
42
48
(
2013
).
5.
Y. C.
Zhou
,
H. Y.
Dong
,
X. H.
Wang
, and
S. Q.
Chen
,
J. Phys. Condens. Matter
12
,
9617
9627
(
2000
).
6.
A.
Bouhemadou
,
Physica B
403
,
2707
2713
(
2008
).
7.
M. A.
Ghebouli
,
B.
Ghebouli
,
A.
Bouhemadou
, and
M.
Fatmi
,
Solid State Commun.
151
,
382
387
(
2011
).
8.
M. A.
Hadi
,
M.
Roknuzzaman
,
A.
Chroneos
,
S. H.
Naqib
,
A. K. M. A.
Islam
,
R. V.
Vovk
, and
K.
Ostrikov
,
Comput. Mater. Sci.
137
,
318
326
(
2017
).
9.
S.-L.
Shang
,
Y.
Wang
,
D. E.
Kim
, and
Z.-K.
Liu
,
Comput. Mater. Sci.
47
,
1040
1048
(
2010
).
10.
S.
Kuchida
,
T.
Muranaka
,
K.
Kawashima
,
K.
Inoue
,
M.
Yoshikawa
, and
J.
Akimitsu
,
Physica C
494
,
77
79
(
2013
).
11.
M. A.
Hadi
,
N.
Kelaidis
,
S. H.
Naqib
,
A.
Chroneos
, and
A. K. M. A.
Islam
,
J. Phys. Chem. Solids
129
,
162
171
(
2019
).
12.
X.-H.
Li
,
C.-H.
Xing
,
H.-L.
Cui
, and
R.-Z.
Zhang
,
J. Phys. Chem. Solids
126
,
65
71
(
2019
).
13.
I. R.
Shein
and
A. L.
Ivanovskii
,
Phys. Status Solidi B
248
,
228
232
(
2011
).
14.
Z.
Sun
,
S.
Li
,
R.
Ahuja
, and
J. M.
Schneider
,
Solid State Commun.
129
,
589
592
(
2004
).
15.
Y.
Shao
,
W.
Ling
,
Y.
Yang
,
X.
Jiang
, and
W.
Duan
,
Int. J. Mod. Phys. B
28
,
1850317
(
2018
).
16.
B.
Manoun
,
R. P.
Gulve
,
S. K.
Saxena
,
S.
Gupta
,
M. W.
Barsoum
, and
C. S.
Zha
,
Phys. Rev. B
73
,
024110
(
2006
).
17.
S.
Cui
,
D.
Wei
,
H.
Hu
,
W.
Feng
, and
Z.
Gong
,
J. Solid State Chem.
191
,
147
152
(
2012
).
18.
M. A.
Ali
,
N.
Jahan
, and
A. K. M. A.
Islam
,
J. Sci. Res.
6
(
3
),
407
419
(
2014
).
19.
M. A.
Ali
and
A. K. M. A.
Islam
,
J. Sci. Res.
4
(
1
),
1
10
(
2012
).
20.
Z.-J.
Yang
,
J.
Li
,
R.-F.
Linghu
,
X.-S.
Song
,
X.-L.
Cheng
,
Z.-H.
Zhu
, and
X.-D.
Yan
,
Eur. Phys. J. B
86
,
1
7
(
2013
).
21.
M. B.
Kanoun
,
S.
Goumri-Said
, and
A. H.
Reshak
,
Comput. Mater. Sci.
47
,
491
500
(
2009
).
22.
Z.
Sun
,
D.
Music
,
R.
Ahuja
,
S.
Li
, and
J. M.
Schneider
,
Phys. Rev. B
70
,
092102
(
2004
).
23.
Y. O.
Ciftci
and
M.
Evecen
,
Phase Trans.
91
,
1
18
(
2018
).
You do not currently have access to this content.