The contrasting d-orbital occupation required for ferroelectricity vs ferromagnetism makes it difficult for their coexistence in two-dimensional materials, especially at high temperature. To resolve this intrinsic contradiction, we propose a layered MoCr2S6 multiferroics by alloying magnetic Cr element into the ferroelectric 1T phase of the MoS2 matrix. First-principles calculations disclose that a spontaneous symmetry breaking, depending on the Mo atom displacement, leads to a robust ferroelectricity, which coexists with a ferromagnetic order originated from two neighboring Cr atoms. The effect can be further enhanced by tensile strain to bring about a room-temperature multiferroicity. Our findings shed new light on the fundamental understanding of multiferroics and display promising applications in spintronics and multistate data storage.

1.
W.
Han
,
R. K.
Kawakami
,
M.
Gmitra
, and
J.
Fabian
,
Nat. Nanotechnol.
9
,
794
(
2014
).
2.
Y.
Zhao
,
L.
Lin
,
Q.
Zhou
,
Y.
Li
,
S.
Yuan
,
Q.
Chen
,
S.
Dong
, and
J.
Wang
,
Nano Lett.
18
,
2943
(
2018
).
3.
C.
Huang
,
Y.
Du
,
H.
Wu
,
H.
Xiang
,
K.
Deng
, and
E.
Kan
,
Phys. Rev. Lett.
120
,
147601
(
2018
).
4.
J.
Qi
,
H.
Wang
,
X.
Chen
, and
X.
Qian
,
Appl. Phys. Lett.
113
,
043102
(
2018
).
5.
M.
Wang
,
X.
Sui
,
Y.
Wang
,
Y.-H.
Juan
,
Y.
Lvu
,
H.
Peng
,
T.
Huang
,
S.
Shen
,
C.
Guo
,
J.
Zhang
 et al,
Adv. Mater.
31
,
1900458
(
2019
).
6.
N. A.
Hill
,
J. Phys. Chem. B
104
,
6694
(
2000
).
7.
C.
Gong
,
E. M.
Kim
,
Y.
Wang
,
G.
Lee
, and
X.
Zhang
,
Nat. Commun.
10
,
2657
(
2019
).
8.
S. N.
Shirodkar
and
U. V.
Waghmare
,
Phys. Rev. Lett.
112
,
157601
(
2014
).
9.
E.
Kan
,
F.
Wu
,
K.
Deng
, and
W.
Tang
,
Appl. Phys. Lett.
103
,
193103
(
2013
).
10.
R.
Fei
,
W.
Kang
, and
L.
Yang
,
Phys. Rev. Lett.
117
,
097601
(
2016
).
11.
M.
Wu
and
X. C.
Zeng
,
Nano Lett.
16
,
3236
(
2016
).
12.
H.
Wang
and
X. F.
Qian
,
2D Mater.
4
,
015042
(
2017
).
13.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Chen
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
 et al,
Nature
546
,
270
(
2017
).
14.
C.
Gong
,
L.
Li
,
Z.
Li
,
H.
Ji
,
A.
Stern
,
Y.
Xia
,
T.
Cao
,
W.
Bao
,
C.
Wang
,
Y.
Wang
 et al,
Nature
546
,
265
(
2017
).
15.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
16.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
17.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
,
1505
(
1998
).
18.
R. D.
King-Smith
and
D.
Vanderbilt
,
Phys. Rev. B
47
,
1651
(
1993
).
19.
C.
Xu
,
Y.
Yang
,
S.
Wang
,
S. Y.
Wang
,
W.
Duan
,
B.
Gu
, and
L.
Bellaiche
,
Phys. Rev. B
89
,
205122
(
2014
).
20.
H.
Tang
,
C.
Xu
,
M.
Li
,
S.
Wang
,
B.-L.
Gu
, and
W.
Duan
,
J. Phys. Condens. Matter
28
,
126002
(
2016
).
21.
D.-H.
Seo
,
J.
Lee
,
A.
Urban
,
R.
Malik
,
S. Y.
Kang
, and
G.
Ceder
,
Nat. Chem.
8
,
692
(
2016
).
22.
Z.-F.
Huang
,
J.
Song
,
Y.
Du
,
S.
Xi
,
S.
Dou
,
J. M. V.
Nsanzimana
,
C.
Wang
,
Z. J.
Xu
, and
X.
Wang
,
Nat. Energy
4
,
329
(
2019
).
23.
C.
Wang
,
X.
Zhou
,
Y.
Pan
,
J.
Qiao
,
X.
Kong
,
C.-C.
Kaun
, and
W.
Jin
,
Phys. Rev. B
97
,
245409
(
2018
).
24.
N.
Metropolis
and
S.
Ulam
,
J. Am. Stat. Assoc.
44
,
335
(
1949
).
25.
C.
Xu
,
J.
Feng
,
H.
Xiang
, and
L.
Bellaiche
,
NPJ Comput. Mater.
4
,
57
(
2018
).
26.
M.
Huang
,
H.
Yan
,
T. F.
Heinz
, and
J.
Hone
,
Nano Lett.
10
,
4074
(
2010
).
27.
H.
Li
,
C.
Tsai
,
A. L.
Koh
,
L.
Cai
,
A. W.
Contryman
,
A. H.
Fragapane
,
J.
Zhao
,
H. S.
Han
,
H. C.
Manoharan
,
F.
Abild-Pedersen
 et al,
Nat. Mater.
15
,
48
(
2016
).
28.
C.
Zhang
,
M.-Y.
Li
,
J.
Tersoff
,
Y.
Han
,
Y.
Su
,
L.-J.
Li
,
D. A.
Muller
, and
C.-K.
Shih
,
Nat. Nanotechnol.
13
,
152
(
2018
).
29.
K. J.
Choi
,
M.
Biegalski
,
Y. L.
Li
,
A.
Sharan
,
J.
Schubert
,
R.
Uecker
,
P.
Reiche
,
Y. B.
Chen
,
X. Q.
Pan
,
V.
Gopalan
 et al,
Science
306
,
1005
(
2004
).
30.
J.
Goodenough
,
Scholarpedia
3
,
7382
(
2008
).

Supplementary Material

You do not currently have access to this content.