An electromechanically coupled model for the simulation of electric current flow in ZnO varistors is presented. The model is based on an equivalent circuit representation of the varistor microstructure, where the grain boundaries are modeled as nonlinear resistors in the circuit. This approach extends on previous circuit models by including the effect of mechanical stress on grain boundary conductivity. The 3D mechanical stress distribution in the material is calculated by the finite element method. Using this distribution, the electrical resistance of each grain boundary is determined by applying a self-consistent model for the trapped interface charge induced by piezoelectric polarization. Finally, the electric current flow patterns and the bulk conductivity of the material are computed using the nonlinear circuit model. The simulated IV-characteristics reveal a significant sensitivity of electrical conductivity to applied stress. For 2D and 3D ZnO varistor models, the simulations demonstrate the effect of current concentration along thin conducting paths depending on microstructure properties and on the mechanical stress condition of the material.

1.
X. W.
Sun
and
H. S.
Kwok
,
J. Appl. Phys.
86
,
408
411
(
1999
).
2.
Z. G.
Ju
,
C. X.
Shan
,
D. Y.
Jiang
,
J. Y.
Zhang
,
B.
Yao
,
D. X.
Zhao
,
D. Z.
Shen
, and
X. W.
Fan
,
Appl. Phys. Lett.
93
,
173505
(
2008
).
3.
K.
Ellmer
,
A.
Klein
, and
B.
Rech
,
Transparent Conductive Zinc Oxide
(
Springer
,
2008
).
4.
D. R.
Clarke
,
J. Am. Ceram. Soc.
82
,
485
502
(
1999
).
5.
T. K.
Gupta
,
J. Am. Ceram. Soc.
73
,
1817
1840
(
1990
).
6.
L. K. J.
Vanadamme
and
J. C.
Brugman
,
J. Appl. Phys.
51
,
4240
4244
(
1980
).
7.
W.
Zhang
,
R.
Zhu
,
V.
Nguyen
, and
R.
Yang
,
Sens. Actuators A
205
,
164
169
(
2014
).
8.
W.
Han
,
Y.
Zhou
,
Y.
Zhang
,
C. Y.
Chen
,
L.
Lin
,
X.
Wang
,
S.
Wang
, and
Z. L.
Wang
,
ACS Nano
6
,
3760
3766
(
2012
).
9.
Y.
Purusothaman
,
N.
Alluri
,
C.
Arunkumar
,
V.
Vivekananthan
, and
S. J.
Kim
,
Small
01
,
1703044
(
2018
).
10.
R.
Baraki
,
N.
Novak
,
T.
Frömling
,
T.
Granzow
, and
J.
Rödel
,
Appl. Phys. Lett.
105
,
111604
(
2014
).
11.
P.
Keil
,
R.
Baraki
,
N.
Novak
,
J.
Rödel
, and
T.
Frömling
,
J. Phys. D Appl. Phys.
50
,
175106
(
2017
).
12.
Z.-Q.
Zhou
,
K.
Taylor
,
E.
Gjonaj
,
T.
Frömling
, and
B.-X.
Xu
,
J. Appl. Phys.
126
,
205101
(
2019
).
13.
P. M.
Verghese
and
D. R.
Clarke
,
J. Appl. Phys.
87
,
4430
4438
(
2000
).
14.
N.
Raidl
,
P.
Supancic
,
R.
Danzer
, and
M.
Hofstätter
,
Adv. Mater.
27
,
2031
2035
(
2015
).
15.
M.
Bartkowiak
and
G. D.
Mahan
,
Phys. Rev. B
51
,
10825
10832
(
1995
).
16.
K.
Bavelis
,
E.
Gjonaj
, and
T.
Weiland
,
Adv. Radio Sci.
12
,
29
34
(
2014
).
17.
G.
Blatter
and
F.
Greuter
,
Phys. Rev. B
33
,
3952
3966
(
1986
).
18.
F.
Greuter
and
G.
Blatter
,
Semicond. Sci. Technol.
5
,
111
137
(
1990
).
19.
A.
Vojta
,
Q.
Wen
, and
D. R.
Clarke
,
Comput. Mater. Sci.
6
,
51
62
(
1996
).
20.
T.
Yao
and
S.
Hong
, Oxide and Nitride Semiconductors Processing, Properties, and Applications, Advances in Materials Research Vol. 12 (Springer, 2009).
21.
Mathematica version 11.3, Software, Wolfram Research Inc., 2018.
22.
Y.
Sato
,
T.
Yamamoto
, and
Y.
Ikuhara
,
J. Am. Ceram. Soc.
90
,
337
357
(
2007
).
23.
M.
Malinen
and
P.
Råback
,
Multiscale Model. Methods Appl. Mater. Sci., IAS Ser.
19
,
101
(
2013
).
24.
R.
Quey
, Neper Reference Manual, 2014.
25.
C.
Geuzaine
and
J.-F.
Remacle
,
Int. J. Numer. Meth. Eng.
79
,
1309
1331
(
2009
).
26.
ltspice xvii, Linear Technology Corporation, 2016.
27.
K.
Sab
,
Eur. J. Mech. Solids
11
,
585
(
1992
); available at https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5545667.
28.
M.
Tao
,
A.
Bui
,
O.
Dorlanne
, and
A.
Loubiere
,
J. Appl. Phys.
61
,
1562
1567
(
1987
).
29.
E.
Olsson
and
G. L.
Dunlop
,
J. Appl. Phys.
66
,
3666
3675
(
1989
).
30.
H.
Wang
,
W.
Li
, and
J. F.
Cordaro
,
Jpn. J. Appl. Phys.
34
,
1765
1771
(
1995
).
31.
M.
Bartkowiak
,
G. D.
Mahan
,
F. A.
Modine
, and
M. A.
Alim
,
J. Appl. Phys.
79
,
273
281
(
1996
).
32.
P.
Keil
,
M.
Gehringer
,
T.
Frömling
,
N.
Novak
, and
J.
Rödel
,
J. Am. Ceram. Soc.
102
,
2640
(
2019
).
33.
G.
Blatter
and
D.
Baeriswyl
,
Phys. Rev. B
36
,
6446
6464
(
1987
).
34.
R.
Baraki
,
N.
Novak
,
M.
Hofstätter
,
P.
Supancic
,
J.
Rödel
, and
T.
Frömling
,
J. Appl. Phys.
118
,
85703
(
2015
).
35.
F.
Ménil
,
H.
Debéda
, and
C.
Lucat
,
J. Eur. Ceram. Soc.
25
,
2105
2113
(
2005
).
36.
M. A.
de la Rubia López
,
M.
Peiteado
,
J. F.
Fernández
,
A. C.
Caballero
,
J.
Holc
,
S.
Drnovsek
,
D.
Kuscer
,
S.
Macek
, and
M.
Kosec
,
J. Eur. Ceram. Soc.
26
,
2985
2989
(
2006
).

Supplementary Material

You do not currently have access to this content.