This study addresses a problem introduced by finite-amplitude oscillations in a liquid piston thermoacoustic Stirling engine and proposes methods to overcome it. After the engine was operated by external heat, the liquid piston oscillated, keeping a flat surface when the amplitude was sufficiently low. However, it became unstable to cause ejection of droplets and formation of air bubbles because the acceleration amplitude exceeded gravitational acceleration. Two methods were proposed to recover the stable liquid surface: one method was the enlargement of the cross-sectional area of the tube around the liquid surface and the other method was the use of submerged polyethylene floats. These methods successfully suppressed the instability of the liquid piston Stirling engine and increased the pressure amplitude by almost twice of the original engine. In addition, adjusting the liquid filling level resulted in the ratio of pressure amplitude over the mean pressure reaching 18% when the acceleration amplitude was elevated to 36m/s2 by the installation of floats. The high-pressure amplitude is an advantage of a liquid piston thermoacoustic Stirling engine over thermoacoustic engines that use only gas as the working fluid.

1.
P. H.
Ceperley
, “
Gain and efficiency of a short traveling wave heat engine
,”
J. Acoust. Soc. Am.
77
,
1239
1244
(
1985
).
2.
T.
Yazaki
,
A.
Iwata
,
T.
Maekawa
, and
A.
Tominaga
, “
Traveling wave thermoacoustic engine in a looped tube
,”
Phys. Rev. Lett.
81
,
3128
3131
(
1998
).
3.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic-Stirling heat engine: Detailed study
,”
J. Acoust. Soc. Am.
107
,
3148
3166
(
2000
).
4.
M. E. H.
Tijani
and
S.
Spoelstra
, “
A high performance thermoacoustic engine
,”
J. Appl. Phys.
110
,
093519
(
2011
).
5.
C. M.
de Blok
, “
Low operating temperature integral thermoacoustic devices for solar cooling and waste heat recovery
,”
J. Acoust. Soc. Am.
123
,
3541
(
2008
).
6.
T.
Biwa
,
D.
Hasegawa
, and
T.
Yazaki
, “
Low temperature differential thermoacoustic Stirling engine
,”
Appl. Phys. Lett.
97
,
034102
(
2010
).
7.
T.
Jin
,
R.
Yang
,
Y.
Wang
,
Y.
Feng
, and
K.
Tang
, “
Low temperature difference thermoacoustic prime mover with asymmetric multi-stage loop configuration
,”
Sci. Rep.
7
,
7665
(
2017
).
8.
E.
Luo
,
W.
Dai
,
Y.
Zhang
, and
H.
Ling
, “
Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles
,”
Appl. Phys. Lett.
88
,
074102
(
2006
).
9.
M.
Tijani
and
S.
Spoelstra
, “
Study of a coaxial thermoacoustic-Stirling cooler
,”
Cryogenics
48
,
77
82
(
2008
).
10.
S.
Backhaus
,
E.
Tward
, and
M.
Petach
, “
Traveling-wave thermoacoustic electric generator
,”
Appl. Phys. Lett.
85
,
1085
1087
(
2004
).
11.
Z.
Wu
,
G.
Yu
,
L.
Zhang
,
W.
Dai
, and
E.
Luo
, “
Development of a 3 kw double-acting thermoacoustic Stirling electric generator
,”
Appl. Energy
136
,
866
872
(
2014
).
12.
A. J.
Jaworski
and
X.
Mao
, “
Development of thermoacoustic devices for power generation and refrigeration
,”
Proc. Inst. Mech. Eng. A
227
,
762
782
(
2013
).
13.
M. A. G.
Timmer
,
K.
de Blok
, and
T. H.
van der Meer
, “
Review on the conversion of thermoacoustic power into electricity
,”
J. Acoust. Soc. Am.
143
,
841
857
(
2018
).
14.
S. L.
Garrett
,
J. A.
Smith
,
R. W. M.
Smith
,
B. J.
Heidrich
, and
M. D.
Heibel
, “
Fission-powered in-core thermoacoustic sensor
,”
Appl. Phys. Lett.
108
,
144102
(
2016
).
15.
G. W.
Swift
, “
Thermoacoustic engines
,”
J. Acoust. Soc. Am.
84
,
1145
1180
(
1988
).
16.
A.
Tominaga
, “
Thermodynamic aspects of thermoacoustic theory
,”
Cryogenics
35
,
427
440
(
1995
).
17.
T.
Biwa
,
Y.
Tashiro
,
M.
Ishigaki
,
Y.
Ueda
, and
T.
Yazaki
, “
Measurements of acoustic streaming in a looped-tube thermoacoustic engine with a jet pump
,”
J. Appl. Phys.
101
,
064914
(
2007
).
18.
K.
Tang
,
Y.
Feng
,
T.
Jin
,
S.
Jin
,
M.
Li
, and
R.
Yang
, “
Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine
,”
Appl. Therm. Eng.
115
,
1089
1100
(
2017
).
19.
G.
Penelet
,
V.
Gusev
,
P.
Lotton
, and
M.
Bruneau
, “
Nontrivial influence of acoustic streaming on the efficiency of annular thermoacoustic prime movers
,”
Phys. Lett. A
351
,
268
273
(
2006
).
20.
U.
Yuki
,
Y.
Shunsuke
,
O.
Kenichiro
, and
O.
Takuya
, “
Measurement and empirical evaluation of acoustic loss in tube with abrupt area change
,”
J. Acoust. Soc. Am.
147
(
1
),
364
370
(
2020
).
21.
D.-H.
Li
,
L.-M.
Zhang
,
Z.-H.
Wu
, and
E.-C.
Luo
, “
Numerical simulation and experimental investigation of a gas–liquid, double-acting traveling-wave thermoacoustic heat engine
,”
Int. J. Energy Res.
37
,
1963
1970
(
2013
).
22.
S.
Langdon-Arms
,
M.
Gschwendtner
, and
M.
Neumaier
, “
Rayleigh–Taylor instability in oscillating liquid pistons
,”
Proc. Inst. Mech. Eng. C
233
,
1236
1245
(
2019
).
23.
S.
Langdon-Arms
,
M.
Gschwendtner
, and
M.
Neumaier
, “
A novel solar-powered liquid piston Stirling refrigerator
,”
Appl. Energy
229
,
603
613
(
2018
).
24.
D.-H.
Li
,
Y.-Y.
Chen
,
E.-C.
Luo
, and
Z.-H.
Wu
, “
Study of a liquid-piston traveling-wave thermoacoustic heat engine with different working gases
,”
Energy
74
,
158
163
(
2014
).
25.
H.
Hyodo
,
S.
Tamura
, and
T.
Biwa
, “
A looped-tube traveling-wave engine with liquid pistons
,”
J. Appl. Phys.
122
,
114902
(
2017
).
26.
C.
Stammers
, “
The operation of the fluidyne heat engine at low differential temperatures
,”
J. Sound Vib.
63
,
507
516
(
1979
).
27.
N.
Yang
,
R.
Rickard
,
K.
Pluckter
, and
T.
Sulchek
, “
Integrated two-cylinder liquid piston Stirling engine
,”
Appl. Phys. Lett.
105
,
143903
(
2014
).
28.
C.
West
, “The fluidyne heat engine,” United Kingdom Atomic Energy Authority Research Group Report AERE R6775,
1971
.
29.
K.
Wang
,
S. R.
Sanders
,
S.
Dubey
,
F. H.
Choo
, and
F.
Duan
, “
Stirling cycle engines for recovering low and moderate temperature heat: A review
,”
Renew. Sustain. Energy Rev.
62
,
89
108
(
2016
).
30.
A.
Migliori
and
G. W.
Swift
, “
Liquid–sodium thermoacoustic engine
,”
Appl. Phys. Lett.
53
,
355
357
(
1988
).
31.
A. A.
Castrejón-Pita
and
G.
Huelsz
, “
Heat-to-electricity thermoacoustic-magnetohydrodynamic conversion
,”
Appl. Phys. Lett.
90
,
174110
(
2007
).
32.
K.
Tang
,
T.
Lei
, and
T.
Jin
, “
Influence of working liquid on the onset characteristics of a thermoacoustic engine with gas and liquid
,”
J. Appl. Phys.
112
,
094909
(
2012
).
33.
J.
Wheatley
,
T.
Hofler
,
G. W.
Swift
, and
A.
Migliori
, “
Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines
,”
Am. J. Phys.
53
,
147
162
(
1985
).
34.
S.
Backhaus
and
G. W.
Swift
, “
An acoustic streaming instability in thermoacoustic devices utilizing jet pumps
,”
J. Acoust. Soc. Am.
113
,
1317
1324
(
2003
).
35.
L. M.
Qiu
,
D. M.
Sun
,
Y. X.
Tan
,
X.
Deng
, and
G. B.
Chen
, “
Investigation on gedeon streaming in a traveling wave thermoacoustic engine
,”
AIP Conf. Proc.
823
,
1115
1122
(
2006
).
36.
A. S.
Abduljalil
,
Z.
Yu
, and
A. J.
Jaworski
, “
Non-linear phenomena occurring during the start-up process of a travelling-wave looped-tube thermoacoustic engine
,”
Proc. Inst. Mech. Eng. A
226
,
822
836
(
2012
).
37.
S.
Tamura
,
H.
Hyodo
, and
T.
Biwa
, “
Experimental and numerical analysis of a liquid-piston Stirling engine with multiple unit sections
,”
Jpn. J. Appl. Phys.
58
,
017001
(
2018
).
38.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I
,”
Proc. R. Soc. London Ser. A
201
,
192
196
(
1950
).
39.
T. B.
Benjamin
,
F. J.
Ursell
, and
G. I.
Taylor
, “
The stability of the plane free surface of a liquid in vertical periodic motion
,”
Proc. R. Soc. London Ser. A
225
,
505
515
(
1954
).
40.
R. A.
Ibrahim
,
Liquid Sloshing Dynamics: Theory and Applications
(
Cambridge University Press
,
2005
).
41.
H.
Hashimoto
and
S.
Sudo
, “
Violent liquid sloshing in vertically excited cylindrical containers
,”
Exp. Therm. Fluid Sci.
1
,
159
169
(
1988
).
42.
C.
West
and
R.
Pandey
, “Laboratory prototype fluidyne water pump,” in Proceedings of the Intersociety Energy Conversion Engineering Conference (1981).
43.
A. M.
Delgado-Torres
, “
Solar thermal heat engines for water pumping: An update
,”
Renew. Sustain. Energy Rev.
13
,
462
472
(
2009
).
44.
E.
Orda
and
K.
Mahkamov
, “
Development of “low-tech” solar thermal water pumps for use in developing countries
,”
J. Sol. Energy Eng.
126
,
768
773
(
2004
).
45.
L.
Yu
,
R.
Fauvel
,
G.
Reader
, and
G.
Walker
, “Application of the fluidyne in developing countries,” in Proceedings of the 27th Intersociety Energy Conversion Engineering Conference (1992).
46.
S.
Langdon-Arms
,
M.
Gschwendtner
, and
M.
Neumaier
, “
Development of a solar-powered liquid piston Stirling refrigerator
,”
Energy Procedia
142
,
570
575
(
2017
).
47.
S.
Ramakrishna
and
Z.-M.
Huang
, “9.06—Biocomposites,” in Comprehensive Structural Integrity, edited by I. Milne, R. Ritchie, and B. Karihaloo (Pergamon, Oxford, 2003), pp. 215–296.
48.
G. W.
Swift
, “
Analysis and performance of a large thermoacoustic engine
,”
J. Acoust. Soc. Am.
92
,
1551
1563
(
1992
).
49.
D. M.
Sun
,
K.
Wang
,
Y.
Xu
,
Q.
Shen
,
X. J.
Zhang
, and
L. M.
Qiu
, “
Thermoacoustic compression based on alternating to direct gas flow conversion
,”
J. Appl. Phys.
111
,
094905
(
2012
).
50.
T.
Biwa
,
R.
Komatsu
, and
T.
Yazaki
, “
Acoustical power amplification and damping by temperature gradients
,”
J. Acoust. Soc. Am.
129
,
132
137
(
2011
).
51.
W.
Martini
, “Test on a 4u tube heat operated heat pump,” in Proceedings of the Intersociety Energy Conversion Engineering Conference (1981).
You do not currently have access to this content.