Mixed transition metal oxide films are emerging as efficient and inexpensive potential alternatives to multilayer cermet spectrally selective coatings. However, to replace the current standards involving a complex metal–dielectric structure, oxides must be optimized in terms of their electronic structure and mainly their film morphology. In the present work, a simple ultrasonic nebulized spray pyrolysis technique is used to deposit CuCo2O4 films for solar absorber coatings. Their photothermal efficiencies are studied for solar thermal energy harvesting for different film thicknesses obtained by varying the deposition time. The film surface attributes are studied using atomic force microscopy and scanning electron microscopy. The films deposited for 5 and 10 min show relatively high visible absorptance (∼0.79) and relatively low thermal emittance (∼0.1) and thus are promising candidates for spectrally selective coatings. Meanwhile, increasing the deposition time (>10 min) increases the thickness, thereby increasing the solar absorptance. However, this results in an uncontrolled increase in the surface roughness, which affects the spectral selectivity adversely, leading to the films having higher thermal emittance of between 0.1 and ∼0.25. Analysis of the specular reflection contribution shows that this deterioration is governed predominantly by interference effects due to surface attributes. This study is important for the technological applications of spectrally selective coatings and makes a significant quantitative contribution to emphasize the importance of surface morphology in optics.

1.
O.
Raccurt
,
A.
Disdier
,
D.
Bourdon
,
S.
Donnola
,
A.
Stollo
, and
A.
Gioconia
,
Energy Proc.
69
,
1551
(
2015
).
2.
W. F.
Bogaerts
and
C. M.
Lampert
,
J. Mater. Sci.
18
,
2847
(
1983
).
3.
C. E.
Kennedy
, “Review of mid- to high-temperature solar selective absorber materials,” Report No. NREL/TP-520-31267; TRN: US200401%%167 United States 10.2172/15000706 TRN: US200401%%167 NREL English (
2002
).
4.
E.
Sani
,
L.
Mercatelli
,
P.
Sansoni
,
L.
Silvestroni
, and
D.
Sciti
,
J. Renewable Sustainable Energy
4
,
033104
(
2012
).
5.
H. C.
Barshilia
,
N.
Selvakumar
,
B.
Deepthi
, and
K. S.
Rajam
,
Surf. Coat. Technol.
201
,
2193
(
2006
).
6.
N.
Selvakumar
and
H. C.
Barshilia
,
Sol. Energy Mater. Sol. Cells
98
,
1
(
2012
).
7.
G. A.
Niklasson
and
C. G.
Granqvist
,
J. Appl. Phys.
55
,
3382
(
1984
).
8.
E.
Erben
,
A.
Muehlratzer
,
B.
Tihanyi
, and
B.
Cornils
,
Solar Energy Mater.
9
,
281
(
1983
).
9.
F.
Cao
,
K.
McEnaney
,
G.
Chen
, and
Z.
Ren
,
Energy Environ. Sci.
7
,
1615
(
2014
).
10.
J.
Zhang
,
T. P.
Chen
,
Y. C.
Liu
,
Z.
Liu
, and
H. Y.
Yang
,
J. Appl. Phys.
121
,
203101
(
2017
).
11.
T. D.
Dao
,
S.
Ishii
,
T.
Yokoyama
,
T.
Sawada
,
R. P.
Sugavaneshwar
,
K.
Chen
,
Y.
Wada
,
T.
Nabatame
, and
T.
Nagao
,
ACS Photonics
3
,
1271
(
2016
).
12.
M.
Bilokur
,
A.
Gentle
,
M. D.
Arnold
,
M. B.
Cortie
, and
G. B.
Smith
,
Solar RRL
1
,
1700092
(
2017
).
13.
J. D.
Gao
,
C. Y.
Zhao
, and
B. X.
Wang
,
J. Appl. Phys.
121
,
113105
(
2017
).
14.
C.
Wang
,
J.
Shi
,
Z.
Geng
, and
X.
Ling
,
Sol. Energy Mater. Sol. Cells
144
,
14
(
2016
).
15.
D.
Hernández-Pinilla
,
A.
Rodríguez-Palomo
,
L.
Álvarez-Fraga
,
E.
Céspedes
,
J. E.
Prieto
,
A.
Muñoz-Martín
, and
C.
Prieto
,
Sol. Energy Mater. Sol. Cells
152
,
141
(
2016
).
16.
J.
Feng
,
S.
Zhang
,
X.
Liu
,
H.
Yu
,
H.
Ding
,
Y.
Tian
, and
J.
Ouyang
,
Vacuum
121
,
135
(
2015
).
17.
E.
Randich
and
D. D.
Allred
,
Thin Solid Films
83
,
393
(
1981
).
18.
H.
Tian
,
Z.
Zhou
,
T.
Liu
,
C.
Karina
,
U.
Guler
,
V.
Shalaev
, and
P.
Bermel
,
Appl. Phys. Lett.
110
,
141101
(
2017
).
19.
M.
Bichotte
,
T.
Kämpfe
,
W.
Iff
,
F.
Celle
,
S.
Reynaud
,
D.
Jamon
,
T.
Pouit
,
A.
Soum-Glaude
,
A.
Keilany
, and
L.
Dubost
, “
Diffractive gratings to improve TiAlN based spectrally selective solar absorbers
,”
AIP Conf. Proc.
2033
,
040007
(
2018
).
20.
X.-H.
Gao
,
H.-X.
Guo
,
T.-H.
Zhou
, and
G.
Liu
,
Sol. Energy Mater. Sol. Cells
176
,
93
(
2018
).
21.
X.-L.
Qiu
,
X.-H.
Gao
,
C.-Y.
He
, and
G.
Liu
,
Opt. Mater.
100
,
109666
(
2020
).
22.
A.
Amri
,
X.
Duan
,
C.-Y.
Yin
,
Z.-T.
Jiang
,
M. M.
Rahman
, and
T.
Pryor
,
Appl. Surf. Sci.
275
,
127
(
2013
).
23.
T.
Karlsson
and
A.
Roos
,
Solar Energy Mater.
10
,
105
(
1984
).
24.
M.
Shimizu
,
M.
Suzuki
,
F.
Iguchi
, and
H.
Yugami
,
J. Appl. Phys.
121
,
183103
(
2017
).
25.
T.
Karlsson
,
A.
Roos
, and
C.-G.
Ribbing
,
Solar Energy Mater.
11
,
469
(
1985
).
26.
B.
Karlsson
,
C. G.
Ribbing
,
A.
Roos
,
E.
Valkonen
, and
T.
Karlsson
,
Phys. Scr.
25
,
826
(
1982
).
27.
D. L.
Douglass
and
R. B.
Pettit
,
Solar Energy Mater.
4
,
383
(
1981
).
28.
Y.
Lu
,
R.
Zhang
,
L.
Wei
,
C.
Lu
,
C.
Wong
,
Y.
Ni
, and
Z.
Xu
,
Mater. Res. Bull.
95
,
190
(
2017
).
29.
A. H.
Alami
,
A.
Allagui
, and
H.
Alawadhi
,
Renewable Energy
82
,
21
(
2015
).
30.
K. T.
Alali
,
Z.
Lu
,
H.
Zhang
,
J.
Liu
,
Q.
Liu
,
R.
Li
,
K.
Aljebawi
, and
J.
Wang
,
Inorg. Chem. Front.
4
,
1219
(
2017
).
31.
A.
Bhargava
,
C. Y.
Chen
,
K.
Dhaka
,
Y.
Yao
,
A.
Nelson
,
K. D.
Finkelstein
,
C. J.
Pollock
,
M.
Caspary Toroker
, and
R. D.
Robinson
,
Chem. Mater.
31
,
4228
(
2019
).
32.
P. S.
Patil
,
Mater. Chem. Phys.
59
,
185
(
1999
).
33.
V. B.
Kamble
and
A. M.
Umarji
,
RSC Adv.
5
,
27509
(
2015
).
34.
V. B.
Kamble
and
A. M.
Umarji
,
J. Mater. Chem. C
1
,
8167
(
2013
).
35.
V. B.
Kamble
and
A. M.
Umarji
,
Sens. Actuators B Chem.
236
,
208
(
2016
).
36.
R.
Bharathi
,
R.
Naorem
, and
A. M.
Umarji
,
J. Phys. D
48
,
305103
(
2015
).
37.
R.
Naorem
,
G.
Dayal
,
S.
Anantha Ramakrishna
,
B.
Rajeswaran
, and
A. M.
Umarji
,
Opt. Commun.
346
,
154
(
2015
).
38.
Z.
Fang
,
L.
Chen
,
Y.
Ni
,
C.
Lu
, and
Z.
Xu
,
Appl. Surf. Sci.
469
,
76
(
2019
).
39.
E.
Sani
,
L.
Mercatelli
,
M.
Meucci
,
L.
Silvestroni
,
A.
Balbo
, and
D.
Sciti
,
Sol. Energy Mater. Sol. Cells
155
,
368
(
2016
).
40.
E.
Sani
,
L.
Mercatelli
,
D.
Fontani
,
J.-L.
Sans
, and
D.
Sciti
,
J. Renewable Sustainable Energy
3
,
063107
(
2011
).
41.
K. C.
Patil
,
Bull. Mater. Sci.
16
,
533
(
1993
).
42.
V. B.
Kamble
,
S. V.
Bhat
, and
A. M.
Umarji
,
J. Appl. Phys.
113
,
244307
(
2013
).
43.
M. C.
Biesinger
,
B. P.
Payne
,
A. P.
Grosvenor
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
,
Appl. Surf. Sci.
257
,
2717
(
2011
).
44.
A.
Amri
,
Z.-T.
Jiang
,
P. A.
Bahri
,
C.-Y.
Yin
,
X.
Zhao
,
Z.
Xie
,
X.
Duan
,
H.
Widjaja
,
M. M.
Rahman
, and
T.
Pryor
,
J. Phys. Chem. C
117
,
16457
(
2013
).
45.
H. E.
Bennett
and
J. O.
Porteus
,
J. Opt. Soc. Am.
51
,
123
(
1961
).
46.
C.-D.
Wen
and
I.
Mudawar
,
Int. J. Heat Mass Transfer
49
,
4279
(
2006
).
47.
L.
Filipovic
,
S.
Selberherr
,
G. C.
Mutinati
,
E.
Brunet
,
S.
Steinhauer
,
A.
Köck,
J.
Teva
,
J.
Kraft
,
J.
Siegert
, and
F.
Schrank
, “Modeling spray pyrolysis deposition,” in Proceedings of the World Congress on Engineering (Newswood Limited, 2013), Vol. II, pp. 737–1473.
48.
D.
Perednis
and
L. J.
Gauckler
,
J. Electroceram.
14
,
103
(
2005
).

Supplementary Material

You do not currently have access to this content.