We report nitric oxide ion (NO+) beam induced nanoscale pattern formation on Si (100) surface. The patterns are found to be structurally as well as chemically periodic. A highly reactive 14 keV NO+ beam is developed in an Electron Cyclotron Resonance ion beam system and implanted on Si (100) surface at oblique angles to form a periodic nano-ripple pattern with specific silicon oxide and silicon oxy-nitride enriched sectors with different dielectric constants. Well-defined ripple patterns start to form at comparatively lower ion fluences due to an additional instability generation by the chemical reaction of NO+ ions with silicon. The chemical shift of the Si 2p peak in the x-ray photoelectron spectroscopy study of an ion irradiated sample confirms the formation of silicon oxide and silicon oxy-nitride, whereas the local chemical nature of the ion induced ripple patterns, probed by electron energy loss spectroscopy, approves spatially resolved silicon oxide and silicon oxy-nitride stripe pattern formation. The ion modified layer thickness measured by cross-sectional transmission electron microscopy has an excellent agreement with Monte Carlo simulations. The optical sensitivity of an NO+ bombarded chemically patterned Si surface is also studied by UV–Visible spectroscopy. Formation mechanisms and potential applications of such nano-scale spatially graded materials are discussed.

1.
B.
Teshome
,
S.
Facsko
, and
A.
Keller
,
Nanoscale
6
,
1790
1796
(
2014
).
2.
M. A.
Arranz
,
J. M.
Colino
, and
F. J.
Palomares
,
J. Appl. Phys.
115
,
183906
(
2014
).
3.
R.
Gupta
and
B.
Rai
,
Nanoscale
10
,
4940
4951
(
2018
).
4.
M. A.
Makeev
,
R.
Cuerno
, and
A.-L.
Barabási
,
Nucl. Instrum. Methods Phys. Res. B
197
,
185
227
(
2002
).
5.
D.
Bhowmik
,
S.
Bhattacharjee
,
D.
Lavanyakumar
,
V.
Naik
,
B.
Satpati
, and
P.
Karmakar
,
Appl. Surf. Sci.
422
,
11
16
(
2017
).
6.
S.
Bhattacharjee
,
D.
Lavanyakumar
,
V.
Naik
,
S.
Mondal
,
S. R.
Bhattacharyya
, and
P.
Karmakar
,
Thin Solid Flims
645
,
265
268
(
2018
).
7.
S.
Bhattacharya
,
P.
Karmakar
, and
A.
Chakrabarti
,
Nucl. Instrum. Methods Phys. Res. B
278
,
58
62
(
2012
).
8.
R. M.
Bradley
and
J.
Harper
,
J. Vac. Sci. Technol. A
6
,
2390
(
1988
).
9.
S. A.
Norris
and
M. J.
Aziz
,
Appl. Phys. Rev.
6
,
011311
(
2019
).
10.
G.
Carter
and
V.
Vishnyakov
,
Phys. Rev. B
54
,
17647
(
1996
).
11.
P.
Karmakar
and
B.
Satpati
,
J. Appl. Phys.
120
,
025301
(
2016
).
12.
D.
Bhowmik
,
M.
Mukherjee
, and
P.
Karmakar
,
Nucl. Instrum. Methods Phys. Res. B
444
,
54
61
(
2019
).
13.
V. I.
Bachurin
,
S. A.
Krivelevich
,
E. V.
Potapov
, and
A. B.
Churilov
,
J. Surf. Invest. X-Ray Synchrotron Neutron Tech.
1
,
136
140
(
2007
).
14.
B.
Khanbabaee
,
S.
Facsko
,
S.
Doyle
, and
U.
Pietsch
,
Appl. Phys. Lett.
105
,
163101
(
2014
).
15.
B.
Khanbabaee
,
D.
Lützenkirchen-Hecht
,
R.
Hübner
,
J.
Grenzer
,
S.
Facsko
, and
U.
Pietsch
,
J. Appl. Phys.
116
,
024301
(
2014
).
16.
A.
Redondo-Cubero
,
K.
Lorenz
,
F. J.
Palomares
,
A.
Muñoz
,
M.
Castro
,
J.
Muñoz-García
,
R.
Cuerno
, and
L.
Vázquez
,
J. Phys. Condens. Matter
30
,
274001
(
2018
).
17.
R. M.
Bradley
,
Phys. Rev. B
85
,
115419
(
2012
).
18.
Y.
Wu
,
G.
Lucovsky
, and
Y.-M.
Lee
,
IEEE Trans. Electron Devices
47
,
1361
1369
(
2000
).
19.
T.
Storgaard-Larsen
and
O.
Leistiko
,
J. Electrochem. Soc.
144
,
1505
1513
(
1997
).
20.
Y.
Shi
,
L.
He
,
F.
Guang
,
L.
Li
,
Z.
Xin
, and
R.
Liu
,
Micromachines
10
,
552
(
2019
).
21.
M. I.
Alayo
,
D.
Criado
,
L. C. D.
Gonçalves
, and
I.
Pereyra
,
J. Non-Cryst. Solids
338–340
,
76
80
(
2004
).
22.
S. K.
Sharma
,
S.
Barthwal
,
V.
Singh
,
A.
Kumar
,
P. K.
Dwivedi
,
B.
Prasad
, and
D.
Kumar
,
Micron
44
,
339
346
(
2013
).
23.
K. C.
Mohite
,
Y. B.
Khollam
,
A. B.
Mandale
,
K. R.
Patil
, and
M. G.
Takwale
,
Mater. Lett.
57
,
4170
(
2003
).
24.
M.
Hillert
,
S.
Jonsson
, and
B.
Sundman
,
Zeitschrift fuer Metallkunde
89
,
648
654
(
1992
).
25.
M.
Serényi
,
M.
Rácz
, and
T.
Lohner
,
Vacuum
61
,
245
249
(
2001
).
26.
K.
Worhoff
,
P. V.
Lambeck
, and
A.
Driessen
,
J. Lightwave Technol.
17
,
1401
1407
(
1999
).
27.
B. S.
Sahu
,
O. P.
Agnihotri
,
S. C.
Jain
,
R.
Mertens
, and
I.
Kato
,
Semicond. Sci. Technol.
15
,
L11
L14
(
2000
).
28.
K.
Prabhakaran
,
Y.
Kobayashi
, and
T.
Ogino
,
Appl. Surf. Sci.
130–132
,
182
(
1998
).
29.
T.
Hänninen
,
S.
Schmidt
,
J.
Jensen
,
L.
Hultman
, and
H.
Högberg
,
J. Vac. Sci. Technol. A
33
,
05E121
(
2015
).
30.
C. D.
Krzeminski
,
J. Appl. Phys.
114
,
224501
(
2013
).
31.
Z. X.
Liu
and
P. F.
Aalkemade
,
Appl. Phys. Lett.
79
,
4334
(
2001
).
32.
J. M.
Garcia
,
M.
Castro
, and
R.
Cuerno
,
Phys. Rev. Lett.
96
,
086101
(
2006
).
33.
D.
Bhowmik
,
D.
Chowdhury
, and
P.
Karmakar
,
Surf. Sci.
679
,
86
92
(
2019
).
34.
G.
Ozaydin
,
A. S.
Özcan
,
Y.
Wang
,
K. F.
Ludwig
,
H.
Zhou
,
R. L.
Headrick
, and
D. P.
Siddons
,
Appl. Phys. Lett.
87
,
163104
(
2005
).
35.
K.
Zhang
,
M.
Brötzmann
, and
H.
Hofsäss
,
New J. Phys.
13
,
013033
(
2011
).
36.
H.
Hofsäss
,
K.
Zhang
,
A.
Pape
,
O.
Bobes
, and
M.
Brötzmann
,
Appl. Phys. A
111
,
653
664
(
2013
).
37.
P.
Karmakar
,
S. A.
Mollick
,
D.
Ghose
, and
A.
Chakrabarti
,
Appl. Phys. Lett.
93
,
103102
(
2008
).
38.
D.
Bhowmik
and
P.
Karmakar
,
Nucl. Instrum. Methods Phys. Res. B
422
,
41
46
(
2018
).
39.
R. M.
Bradley
,
Phys. Rev. B
83
,
195410
(
2011
).
40.
R. M.
Bradley
,
Phys. Rev. B
87
,
205408
(
2013
).
41.
R. M.
Bradley
,
J. Appl. Phys.
119
,
134305
(
2016
).
42.
K.
Elst
and
W.
Vandervorst
,
J. Vac. Sci. Technol. A
12
,
3205
(
1994
).
43.
Y.
Homma
,
A.
Takano
, and
Y.
Higashi
,
Appl. Surf. Sci.
203–204
,
35
38
(
2003
).
44.
E.
Iacob
,
R.
Dell’Anna
,
D.
Giubertoni
,
E.
Demenev
,
M.
Secchi
,
R.
Böttger
, and
G.
Pepponi
,
Microelectron. Eng.
155
,
50
54
(
2016
).
45.
H.
Du
,
R. E.
Tressler
,
K. E.
Spear
, and
C. G.
Pantano
,
J. Electrochem. Soc.
136
,
1527
1536
(
1989
).
46.
Z.
Shuxian
,
W. K.
Hall
,
G.
Ertl
, and
H.
Knözinger
,
J. Catal.
100
,
167
(
1986
).
47.
K.
Suzuki
,
M.
Soma
,
T.
Onishi
, and
K.
Tamaru
,
J. Electron Spectrosc. Relat. Phenom.
24
,
283
287
(
1981
).
48.
L.
Bois
,
P.
L’Haridon
,
Y.
Laurent
,
X.
Gouin
,
P.
Grange
,
J.-F.
Létard
,
M.
Birot
,
J.-P.
Pillot
, and
J.
Dunoguès
,
J. Alloys Compd.
232
,
244
253
(
1996
).
49.
R. F.
Egerton
,
Rep. Prog. Phys.
72
,
016502
(
2009
).
50.
B.
Lacroix
,
V.
Godinho
, and
A.
Fernandez
,
J. Phys. Chem. C
120
,
5651
5658
(
2016
).
51.
G.
Kissinger
,
M. A.
Schubert
,
D.
Kot
, and
T.
Grabolla
,
ECS J. Solid State Sci. Technol.
6
,
N54
N63
(
2017
).
52.
M.
Bruns
,
U.
Geckle
,
V.
Trouillet
,
M.
Rudolphi
, and
H.
Baumann
,
J. Vac. Sci. Technol. A
23
,
1114
(
2005
).
53.
A. E. T.
Kuiper
,
M. F. C.
Willemsen
,
J. M. L.
Mulder
,
J. B. O.
Elferink
,
F. H. P. M.
Habraken
, and
W. F.
van der Weg
,
J. Vac. Sci. Technol. B
7
,
455
(
1989
).
54.
H.-I.
Lee
,
J.-B.
Park
,
W.
Xianyu
,
K.
Kim
,
J. G.
Chung
,
Y. K.
Kyoung
,
S.
Byun
,
W. Y.
Yang
,
Y. Y.
Park
,
S. M.
Kim
,
E.
Cho
, and
J. K.
Shin
,
Sci. Rep.
7
,
14146
(
2017
).
55.
D. A.
Pearson
and
R. M.
Bradley
,
J. Phys. Condens. Matter
27
,
015010
(
2015
).
56.
Y.
Choi
,
S.
Hong
, and
L. P.
Lee
,
Nano Lett.
9
,
3726
3731
(
2009
).
57.
P.
Karmakar
and
B.
Satpati
,
Appl. Phys. Lett.
104
,
231601
(
2014
).
58.
I. J. R.
Baumvol
,
J.-J.
Ganem
,
L. G.
Gosset
,
I.
Trimaille
, and
S.
Rigo
,
Appl. Phys. Lett.
72
,
2999
(
1998
).
59.
F. H. P. M.
Habraken
,
A. E. T.
Kuiper
,
Y.
Tamminga
, and
J. B.
Theeten
,
J. Appl. Phys.
53
,
6996
(
1982
).
60.
D.
Bhowmik
and
P.
Karmakar
, “
Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation
,”
AIP Conf. Proc.
1953
,
100071
(
2018
).
61.
J.
Steffens
,
M. A.
Fazio
,
D.
Cavalcoli
, and
B.
Terheiden
,
Sol. Energy Mater. Sol. Cells
187
,
104
112
(
2018
).
You do not currently have access to this content.