Selectivity of the electric field direction plays a vital role in modulating the phonon characteristics as well as electrical properties in low-dimensional materials. A comprehensive study on the effects of the direction-dependent electric field on MoS2 sample is reported herewith. The field-induced changes in the phonon characteristics and electronic band structure have been systematically investigated based on field responsive Raman and photoluminescence measurements. The atomistic insights obtained from density functional theory calculations have been correlated with the experimental observations to elucidate the underlying mechanism. The applied transverse electric field is found to be significantly more efficacious than the electric field applied vertically in altering the phonon signatures and bandgap in MoS2, where the electrostrictive response is found to arise from the field-induced alteration in metal–chalcogen interatomic bonds.

1.
W.
Wu
,
L.
Wang
,
Y.
Li
,
F.
Zhang
,
L.
Lin
,
S.
Niu
,
D.
Chenet
,
X.
Zhang
,
Y.
Hao
,
T. F.
Heinz
, and
J.
Hone
,
Nature
514
,
470
(
2014
).
2.
H.
Zhu
,
Y.
Wang
,
J.
Xiao
,
M.
Liu
,
S.
Xiong
,
Z. J.
Wong
,
Z.
Ye
,
X.
Yin
, and
X.
Zhang
,
Nat. Nanotechnol.
10
,
151
(
2015
).
3.
A.
Das
,
S.
Pisana
,
B.
Chakraborty
,
S.
Piscanec
,
S. K.
Saha
,
U. V.
Waghmare
,
K. S.
Novoselov
,
H. R.
Krishnamurthy
,
A. K.
Geim
,
A. C.
Ferrari
, and
A. K.
Sood
,
Nat. Nanotechnol.
3
,
210
(
2008
).
4.
B.
Chakraborty
,
A.
Bera
,
D. V. S.
Muthu
,
S.
Bhowmick
,
U. V.
Waghmare
, and
A. K.
Sood
,
Phys. Rev. B
85
,
161403
(
2012
).
5.
A.
Pezeshki
,
S. H. H.
Shokouh
,
S. R. A.
Raza
,
J. S.
Kim
,
S. W.
Min
,
I.
Shackery
,
S. C.
Jun
, and
S.
Im
,
J. Mater. Chem. C
2
,
8023
8028
(
2014
).
6.
I.
Jahangir
,
G.
Koley
, and
M. V. S.
Chandrashekhar
,
Appl. Phys. Lett.
110
,
182108
(
2017
).
7.
I.
Meric
,
M. Y.
Han
,
A. F.
Young
,
B.
Ozyilmaz
,
P.
Kim
, and
K. L.
Shepard
,
Nat. Nanotechnol.
3
,
654
(
2008
).
8.
H.
Qiu
,
L.
Pan
,
Z.
Yao
,
J.
Li
,
Y.
Shi
, and
X.
Wang
,
Appl. Phys. Lett.
100
,
123104
(
2012
).
9.
X.
Zou
,
J.
Wang
,
C.-H.
Chiu
,
Y.
Wu
,
X.
Xiao
,
C.
Jiang
,
W.-W.
Wu
,
L.
Mai
,
T.
Chen
,
J.
Li
, and
J. C.
Ho
,
Adv. Mater.
26
,
6255
6261
(
2014
).
10.
J.
Yan
,
Y.
Zhang
,
P.
Kim
, and
A.
Pinczuk
,
Phys. Rev. Lett.
98
,
166802
(
2007
).
11.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
669
(
2004
).
12.
M.-H.
Chen
,
Y.-S.
Wang
,
C.-Y.
Huang
,
W. H.
Wang
, and
H. C
Chui
,
J. Phys. D Appl. Phys.
51
,
385303
(
2018
).
13.
X.
Lu
,
M. I. B.
Utama
,
X.
Wang
,
W.
Xu
,
W.
Zhao
,
M. H. S.
Owen
, and
Q.
Xiong
,
Small
13
,
1701039
(
2017
).
14.
Y.
Wang
,
C.
Cong
,
C.
Qiu
, and
T.
Yu
,
Small
9
,
2857
2861
(
2013
).
15.
M.
Sharma
,
A.
Kumar
,
P. K.
Ahluwalia
, and
R.
Pandey
,
J. Appl. Phys.
116
,
063711
(
2014
).
16.
M.
Huang
,
H.
Yan
,
T. F.
Heinz
, and
J.
Hone
,
Nano Lett.
10
,
4074
4079
(
2010
).
17.
X.
Liu
and
Z.
Li
,
J. Phys. Chem. Lett.
6
,
3269
3275
(
2015
).
18.
M.
Thripuranthaka
,
R. V.
Kashid
,
C.
Sekhar Rout
, and
D. J.
Late
,
Appl. Phys. Lett.
104
,
081911
(
2014
).
19.
Q.
Li
,
L.
Xu
,
K.-W.
Luo
,
X.-F.
Li
,
W.-Q.
Huang
,
L.-L.
Wang
, and
Y.-B.
Yu
,
J. Mater. Chem. C
5
,
4426
4434
(
2017
).
20.
Q.
Liu
,
L.
Li
,
Y.
Li
,
Z.
Gao
,
Z.
Chen
, and
J.
Lu
,
J. Phys. Chem. C
116
,
21556
21562
(
2012
).
21.
S. B.
Kumar
and
J.
Guo
,
Appl. Phys. Lett.
98
,
222101
(
2011
).
22.
X.
Chen
,
C.
Tan
,
Q.
Yang
,
R.
Meng
,
Q.
Liang
,
J.
Jiang
,
X.
Sun
,
D. Q.
Yang
, and
T.
Ren
,
Phys. Chem. Chem. Phys.
18
,
16229
16236
(
2016
).
23.
J.
Xiao
,
M.
Long
,
X.
Li
,
Q.
Zhang
,
H.
Xu
, and
K. S.
Chan
,
J. Phys. Condens. Matter
26
,
405302
(
2014
).
24.
Z. Y.
Zhang
,
M. S.
Si
,
Y. H.
Wang
,
X. P.
Gao
,
D.
Sung
,
S.
Hong
, and
J.
He
,
J. Chem. Phys.
140
,
174707
(
2014
).
25.
S. P.
Koenig
,
R. A.
Doganov
,
H.
Schmidt
,
A. H.
Castro Neto
, and
B.
Oezyilmaz
,
Appl. Phys. Lett.
104
,
103106
(
2014
).
26.
A.
Prakash
,
H.
Ilatikhameneh
,
P.
Wu
, and
J.
Appenzeller
,
Sci. Rep.
7
,
12596
(
2017
).
27.
A.
Kumar
and
P. K.
Ahluwalia
,
Phys. B Condens. Matter
407
,
4627
4634
(
2012
).
28.
Y.
Ding
and
B.
Xiao
,
RSC Adv.
5
,
18391
18400
(
2015
).
29.
L. F.
Mattheiss
,
Phys. Rev. B
8
,
3719
3740
(
1973
).
30.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
11186
(
1996
).
31.
A. M.
Sanchez
and
L.
Wirtz
,
Phys. Rev. B
84
,
155413
(
2011
).
32.
W. S.
Yun
,
S. W.
Han
,
S. C.
Hong
,
I. G.
Kim
, and
J. D.
Lee
,
Phys. Rev. B
85
,
033305
(
2012
).
33.
A.
Ramasubramaniam
,
D.
Naveh
, and
E.
Towe
,
Phys. Rev. B
84
,
205325
(
2011
).
34.
K.
Dolui
,
C. D.
Pemmaraju
, and
S.
Sanvito
,
ACS Nano
6
,
4823
4834
(
2012
).
35.
T.
Cheiwchanchamnangij
and
W. R. L.
Lambrecht
,
Phys. Rev. B
85
,
205302
(
2012
).
36.
H.
Shi
,
H.
Pan
,
Y.-W.
Zhang
, and
B. I.
Yakobson
,
Phys. Rev. B
87
,
155304
(
2013
).
37.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
17979
(
1994
).
38.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
1775
(
1999
).
39.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
50
(
1996
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
41.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. B
46
,
16067
16080
(
1992
).

Supplementary Material

You do not currently have access to this content.