Plastic deformation in InSb single crystals is governed by the motion of dislocations. Since InSb has a diamond cubic lattice, it possesses two sets of slip planes: a shuffle set and a glide set. Transmission electron microscopy analysis of deformed bulk single crystals shows that, at low temperatures (<20 °C), dislocations have narrow cores, while at higher temperatures, they have extended cores. However, it remains unclear to which slip plane set these dislocations belong. In this paper, by combining experiments and atomic-level calculations, we show that dislocations with narrow and extended cores, respectively, belong to the shuffle and glide sets. The conclusion is reached by calculating the generalized stacking fault energy curves and ideal shear stresses using density functional theory calculations and the intrinsic stacking fault width associated with dislocations using atomistic simulations. It is also found that while the shuffle set dislocations are easier to activate at lower temperatures, dislocations on the glide set become dominant at higher temperatures.

1.
J.
Rabier
,
L.
Pizzagalli
, and
J. L.
Demenet
, in
Dislocations in Solids
, edited by
J. P.
Hirth
and
L.
Kubin
(
North Holland
,
Amsterdam
,
2010
), Vol. 16, p. 47.
2.
B.
Kedjar
,
L.
Thilly
,
J.-L.
Demenet
, and
J.
Rabier
,
Acta Mater.
58
,
1418
(
2010
).
3.
B.
Kedjar
,
L.
Thilly
,
J.-L.
Demenet
, and
J.
Rabier
,
Acta Mater.
58
,
1426
(
2010
).
4.
J.
Castaing
,
J.
Cadoz
, and
S. H.
Kirby
,
J. Am. Ceram. Soc.
64
,
504
(
1981
).
5.
J.
Rabier
,
Mater. Today Proc.
5
,
14705
(
2018
).
6.
D.
Rodney
,
L.
Ventelon
,
E.
Clouet
,
L.
Pizzagalli
, and
F.
Willaime
,
Acta Mater.
124
,
633
(
2017
).
7.
L.
Pizzagalli
and
P.
Beauchamp
,
Philos. Mag. Lett.
88
,
421
(
2008
).
8.
L.
Thilly
,
R.
Ghisleni
,
C.
Swistak
, and
J.
Michler
,
Philos. Mag.
92
,
3315
(
2012
).
9.
J. M.
Wheeler
,
L.
Thilly
,
A.
Morel
,
A. A.
Taylor
,
A.
Montagne
,
R.
Ghisleni
, and
J.
Michler
,
Acta Mater.
106
,
283
(
2016
).
10.
V. L. R.
Jacques
,
D.
Carbone
,
R.
Ghisleni
, and
L.
Thilly
,
Phys. Rev. Lett.
111
,
065503
(
2013
).
11.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
12.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
13.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
14.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
15.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
16.
S. C.
Costa
,
P. S.
Pizani
, and
J. P.
Rino
,
Phys. Rev. B
66
,
214111
(
2002
).
17.
J. P.
Rino
,
G. d. O.
Cardozo
, and
A.
Picinin
,
Comput. Mater. Cont.
12
,
145
(
2009
).
18.
S.
Plimpton
,
J. Comp. Phys.
117
,
1
(
1995
).
19.
M.
Whelan
,
Proc. R. Soc. Lond. A
249
,
114
(
1959
).
20.
L. M.
Brown
and
A. R.
Thölén
,
Discuss. Faraday Soc.
38
,
35
(
1964
).
21.
T.
Sasakura
,
H.
Yoneda
,
K.
Suito
, and
H.
Fujisawa
,
High Press. Res.
4
,
318
(
1990
).
22.
M.
Breivik
,
T. A.
Nilsen
, and
B.
Fimland
,
J. Cryst. Growth
381
,
165
(
2013
).
23.
A.
Aresti
,
L.
Garbato
, and
A.
Rucci
,
J. Phys. Chem. Solids
45
,
361
(
1984
).
24.
Y.
Mo
,
H.
Tang
,
A.
Bansil
, and
J.
Tao
,
AIP Adv.
8
,
095209
(
2018
).
25.
P.
Haas
,
F.
Tran
, and
P.
Blaha
,
Phys. Rev. B
79
,
085104
(
2009
).
26.
Y.
Su
,
S.
Xu
, and
I. J.
Beyerlein
,
J. Appl. Phys.
126
,
105112
(
2019
).
27.
D.
Hall
and
D. J.
Bacon
,
Introduction to Dislocations
, 5th ed. (
Butterworth-Heinemann
,
Burlington
,
MA
,
2011
).
28.
S.
Xu
,
Y.
Su
, and
I. J.
Beyerlein
,
Mech. Mater.
139
,
103200
(
2019
).
29.
S.
Xu
,
L.
Smith
,
J. R.
Mianroodi
,
A.
Hunter
,
B.
Svendsen
, and
I. J.
Beyerlein
,
Modell. Simul. Mater. Sci. Eng.
27
,
074004
(
2019
).
30.
Y.
Su
,
S.
Xu
, and
I. J.
Beyerlein
,
Modell. Simul. Mater. Sci. Eng.
27
,
084001
(
2019
).
31.
S.
Xu
,
J. R.
Mianroodi
,
A.
Hunter
,
I. J.
Beyerlein
, and
B.
Svendsen
,
Philos. Mag.
99
,
1400
(
2019
).
32.
H.
Gottschalk
,
G.
Patzer
, and
H.
Alexander
,
Phys. Status Solidi A
45
,
207
(
1978
).
33.
E.
Kaxiras
and
M. S.
Duesbery
,
Phys. Rev. Lett.
70
,
3752
(
1993
).
34.
Y.
Juan
and
E.
Kaxiras
,
Philos. Mag. A
74
,
1367
(
1996
).
You do not currently have access to this content.