We use density functional theory and reactive-force-field methods to investigate the electrical and thermal transport properties of long disordered lithiated silicon nanowires. The latter could build the core of future lithium ion batteries with enhanced storage capacity. Due to the amorphous nature of these nanowires, disorder and surface roughness effects inevitably arise, affecting the lithiation process. It is found that the electrical conductivity of the nanowires steadily increases as a function of the lithium concentration, despite the presence of disorder, while the thermal conductivity follows the opposite trend and decreases significantly with reduced heat evacuation capabilities as a consequence. This behavior can be attributed to the influence of Li ions, which on one hand tend to metallize Si nanowires and thus enhance their electron mobility. On the other hand, the random distribution of Li atoms perturbs the phonon propagation through the nanowire, explaining the decrease in thermal conductivity.

1.
P.
Poizot
,
S.
Laruelle
,
S.
Grugeon
,
L.
Dupont
, and
J.
Tarascon
,
Nature
407
,
496
(
2000
).
2.
M.
Armand
and
J.-M.
Tarascon
,
Nature
451
,
652
(
2008
).
3.
J.-M.
Tarascon
and
M.
Armand
, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 171–179.
4.
B.
Dunn
,
H.
Kamath
, and
J.-M.
Tarascon
,
Science
334
,
928
(
2011
).
5.
M. M.
Thackeray
,
C.
Wolverton
, and
E. D.
Isaacs
,
Energy Environ. Sci.
5
,
7854
(
2012
).
6.
D.
Larcher
and
J.-M.
Tarascon
,
Nat. Chem.
7
,
19
(
2015
).
7.
D.
Ma
,
Z.
Cao
, and
A.
Hu
,
Nano-Micro Lett.
6
,
347
(
2014
).
8.
S.
Goriparti
,
E.
Miele
,
F.
De Angelis
,
E.
Di Fabrizio
,
R. P.
Zaccaria
, and
C.
Capiglia
,
J. Power Sources
257
,
421
(
2014
).
9.
L.-F.
Cui
,
Y.
Yang
,
C.-M.
Hsu
, and
Y.
Cui
,
Nano Lett.
9
,
3370
(
2009
).
10.
C. K.
Chan
,
H.
Peng
,
G.
Liu
,
K.
McIlwrath
,
X. F.
Zhang
,
R. A.
Huggins
, and
Y.
Cui
,
Nat. Nanotechnol.
3
,
31
(
2008
).
11.
S. W.
Lee
,
M. T.
McDowell
,
J. W.
Choi
, and
Y.
Cui
,
Nano Lett.
11
,
3034
(
2011
).
12.
T.
Kennedy
,
M.
Brandon
, and
K. M.
Ryan
,
Adv. Mater.
28
,
5696
(
2016
).
13.
C.-M.
Park
,
J.-H.
Kim
,
H.
Kim
, and
H.-J.
Sohn
,
Chem. Soc. Rev.
39
,
3115
(
2010
).
14.
M.
Luisier
,
A.
Schenk
, and
W.
Fichtner
,
J. Appl. Phys.
100
,
043713
(
2006
).
15.
C.
Yam
,
L.
Meng
,
G.
Chen
,
Q.
Chen
, and
N.
Wong
,
Phys. Chem. Chem. Phys.
13
,
14365
(
2011
).
16.
M.
Anantram
,
M. S.
Lundstrom
, and
D. E.
Nikonov
,
Proc. IEEE
96
,
1511
(
2008
).
17.
T.
Bunjaku
,
D.
Bauer
, and
M.
Luisier
,
Phys. Rev. Mater.
3
,
105402
(
2019
).
18.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
19.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
,
Wiley Interdiscip. Rev. Comput. Mol. Sci.
4
,
15
(
2014
).
20.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
21.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
22.
M.
Luisier
,
A.
Schenk
,
W.
Fichtner
, and
G.
Klimeck
,
Phys. Rev. B
74
,
205323
(
2006
).
23.
F.
Fan
,
S.
Huang
,
H.
Yang
,
M.
Raju
,
D.
Datta
,
V. B.
Shenoy
,
A. C.
Van Duin
,
S.
Zhang
, and
T.
Zhu
,
Model. Simul. Mater. Sci. Eng.
21
,
074002
(
2013
).
24.
See https://www.synopsys.com/silicon/quantumatk.html for “QuantumATK 2017.1” (accessed 13 March 2019).
25.
J.
Schneider
,
J.
Hamaekers
,
S. T.
Chill
,
S.
Smidstrup
,
J.
Bulin
,
R.
Thesen
,
A.
Blom
, and
K.
Stokbro
,
Model. Simul. Mater. Sci. Eng.
25
,
085007
(
2017
).
26.
M.
Luisier
,
J. Appl. Phys.
110
,
074510
(
2011
).
27.
K.
Rim
,
S.
Narasimha
,
M.
Longstreet
,
A.
Mocuta
, and
J.
Cai
, in Digest. International Electron Devices Meeting (IEEE, 2002), pp. 43–46.
28.
Y.-M.
Niquet
,
V.-H.
Nguyen
,
F.
Triozon
,
I.
Duchemin
,
O.
Nier
, and
D.
Rideau
,
J. Appl. Phys.
115
,
054512
(
2014
).
29.
30.
W.
Haynes
,
D.
Lide
, and
T.
Bruno
,
CRC Handbook of Chemistry and Physics
, 97th ed. (
CRC Press
,
2017
), Vol. 2016–2017.
31.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2006
).
32.
M.
Luisier
,
Phys. Rev. B
86
,
245407
(
2012
).
33.
A. L.
Moore
,
S. K.
Saha
,
R. S.
Prasher
, and
L.
Shi
,
Appl. Phys. Lett.
93
,
083112
(
2008
).
34.
P.
Martin
,
Z.
Aksamija
,
E.
Pop
, and
U.
Ravaioli
,
Phys. Rev. Lett.
102
,
125503
(
2009
).
35.
P. N.
Martin
,
Z.
Aksamija
,
E.
Pop
, and
U.
Ravaioli
,
Nano Lett.
10
,
1120
(
2010
).
36.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J.-K.
Yu
,
W. A.
Goddard III
, and
J. R.
Heath
,
Nature
451
,
168
(
2008
).
37.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
(
2008
).
38.
T. L.
Bergman
,
F. P.
Incropera
,
D. P.
DeWitt
, and
A. S.
Lavine
,
Fundamentals of Heat and Mass Transfer
(
John Wiley & Sons
,
2011
).
39.
M.
Luisier
,
Appl. Phys. Lett.
103
,
113103
(
2013
).

Supplementary Material

You do not currently have access to this content.