A single phase 0.94(Na0.5Bi0.5TiO3)–0.06(Ba0.85Ca0.15Ti0.9Zr0.1O3) solid solution (i.e., BCZT-0.06) is prepared using a conventional solid-state sintering route with enhanced piezo and ferroelectric properties as compared to Na0.5Bi0.5TiO3 (NBT). In the context of understanding the origin of enhanced piezoelectric properties in a BCZT-0.06 specimen, electric field driven studies on different length scales, viz., global, local, and electronic structure, are carried out using x-ray/neutron diffraction, Raman scattering, and UV–Vis spectroscopic techniques. An analysis on different length scales of the electric field-driven BCZT-0.06 specimen displays minimum rhombohedral lattice distortion (δr), reduced homogeneous lattice strain (δ), octahedral strain (ζ), and pronounced Ti-cation displacement along the polar [111] direction as compared to parent NBT. The enhanced ferro and piezoelectric responses observed in the BCZT-0.06 specimen have been attributed to the ease of non-180° domain re-orientation, domain switching, and domain wall motion due to reduced strain coupled with a polarization extension mechanism.

1.
J.
Koruza
,
A. J.
Bell
,
T.
Fromling
,
K. G.
Webber
,
K.
Wang
, and
J.
Rodel
,
J. Materiomics
4
,
13
(
2018
).
2.
J.
Rodel
,
K. G.
Webber
,
R.
Dittmer
,
W.
Jo
,
M.
Kiruma
, and
D.
Damjanovic
,
J. Eur. Ceram. Soc.
35
,
1659
(
2015
).
3.
C.-H.
Hong
,
H.-P.
Kim
,
B.-Y.
Cgoi
,
H.-S.
Han
,
J. S.
Son
,
C. W.
Ahn
, and
W.
Jo
,
J. Materiomics
2
,
1
(
2016
).
4.
W.
Heywang
,
K.
Lubitz
, and
W.
Wersing
,
Piezoelectricity-Evolution and Future of a Technology
(
Springer Publications
,
2008
).
5.
B.
Jaffe
,
W. R.
Cook
, Jr.
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
New York
,
1971
).
6.
B. N.
Rao
and
R.
Ranjan
,
Phys. Rev. B
86
,
134103
(
2012
).
7.
B. N.
Rao
,
R.
Dutta
,
S.
Selva Chandrasekaran
,
D. K.
Mishra
,
V.
Sathe
,
A.
Senyshyn
, and
R.
Ranjan
,
Phys. Rev. B
88
,
224103
(
2013
).
8.
T.
Karthik
and
S.
Asthana
,
J. Phys. D Appl. Phys.
50
,
385601
(
2017
).
9.
T.
Karthik
,
D.
Radhakrishanan
,
C.
Narayana
, and
S.
Asthana
,
J. Alloys Compd.
732
,
945
951
(
2018
).
10.
J. E.
Daniels
,
W.
Jo
,
J.
Rodel
, and
J. L.
Jones
,
Appl. Phys. Lett.
95
,
032904
(
2009
).
11.
G.
Picht
,
J.
Töpfer
, and
E.
Hennig
,
J. Eur. Ceram. Soc.
30
,
3445
(
2010
).
12.
A. J.
Royles
,
A. J.
Bell
,
A. P.
Jephcoat
,
A. K.
Kleppe
,
S. J.
Milne
, and
T. P.
Comyn
,
Appl. Phys. Lett.
97
,
132909
(
2010
).
13.
M.
Otoničar
,
S. D.
Škapin
,
B.
Jančar
, and
D.
Suvorov
,
J. Appl. Phys.
113
,
024106
(
2013
).
14.
C.
Ma
,
H.
Guo
, and
X.
Tan
,
Adv. Funct. Mater.
23
,
5261
(
2013
).
15.
H.
Simons
,
J.
Daniels
,
W.
Jo
,
R.
Dittmer
,
A.
Studer
,
M.
Avdeev
,
J.
Rödel
, and
M.
Hoffman
,
Appl. Phys. Lett.
98
,
082901
(
2011
).
16.
A.
Mahajan
,
H.
Zhang
,
J.
Wu
,
E.
Venkata Ramana
,
M. J.
Reece
, and
H.
Yan
,
J. Phys. Chem. C
121
(
10
),
5709
5718
(
2017
).
17.
G.
Viola
,
H.
Ning
,
M. J.
Reece
,
R.
Wilson
,
T. M.
Correia
,
P.
Weaver
,
M. G.
Cain
, and
H.
Yan
,
J. Phys. D Appl. Phys.
45
,
355302
(
2012
).
18.
X.
Liu
and
X.
Tan
,
Adv. Mater.
28
,
574
578
(
2016
).
19.
J. P.
Praveen
,
T.
Karthik
,
A. R.
James
,
E.
Chandrakala
,
S.
Asthana
, and
D.
Das
,
J. Eur. Ceram. Soc.
35
,
1785
(
2015
).
20.
L.
Jin
,
W.
Luo
,
L.
Wang
,
Y.
Tian
,
Q.
Hu
,
L.
Houa
,
L.
Zhang
,
X.
Lu
,
H.
Du
,
X.
Wei
,
G.
Liu
, and
Y.
Yan
,
J. Eur. Ceram. Soc.
39
,
277
(
2019
).
21.
T.
Karthik
, “
Structure property correlation through electric field driven effects in lead free Na0.5Bi0.5TiO3 based ferro/piezoelectric ceramics
,”
Doctoral dissertation
(
Indian Institute of Technology Hyderabad
,
India
,
2016
).
22.
T.
Karthik
and
S.
Asthana
,
Mater. Lett.
190
,
273
275
(
2017
).
23.
H.
Zhang
,
P.
Xu
,
E.
Patterson
,
J.
Zang
,
S.
Jiang
, and
J.
Rödel
,
J. Eur. Ceram. Soc.
35
,
2501
2512
(
2015
).
24.
S.
Priya
and
S.
Nahm
,
Lead Free Piezoelectrics
(
Springer Publications
,
2012
).
25.
G. D.
Adhikary
,
D. K.
Khatua
,
A.
Senyshyn
, and
R.
Ranjan
,
Acta Mater.
164
,
749
(
2019
).
26.
P.
Kumar
,
N.
Shankhwar
,
A.
Srinivasan
, and
M.
Kar
,
J. Appl. Phys.
117
,
194103
(
2015
).
27.
K.
Thangavelu
,
T.
Durga Rao
,
A.
Srinivas
, and
S.
Asthana
,
J. Mater. Sci. Mater. Electron.
26
,
8676
(
2015
).
28.
M. K.
Niranjan
,
T.
Karthik
,
S.
Asthana
,
J.
Pan
, and
U. V.
Waghmare
,
J. Appl. Phys.
113
,
194106
(
2013
).
29.
E. K. H.
Salje
and
U.
Bismayer
,
Phase Transit.
63
,
1
75
(
1997
).
30.
H.
Zhang
,
Q.
Zhang
,
X.
Zhao
,
X.
Li
,
D.
Wang
, and
H.
Luo
,
Appl. Phys. Lett.
102
,
202904
(
2013
).
31.
M.
Zeng
,
S. W.
Or
, and
H. L. W.
Chan
,
J. Appl. Phys.
107
,
043513
(
2010
).
32.
H. W.
Eng
,
P. W.
Barnes
,
B. M.
Auer
, and
P. M.
Woodward
,
J. Solid State Chem.
175
,
94
109
(
2003
).
33.
T.
Qi
,
I.
Grinberg
, and
A. M.
Rappe
, “
Band-gap engineering via local environment in complex oxides
,”
Phys. Rev. B
83
,
224108
(
2011
).
34.
F.
Wang
,
I.
Grinberg
, and
A. M.
Rappe
,
Appl. Phys. Lett.
104
,
152903
(
2014
).
35.
B. N.
Rao
,
M.
Avdeev
,
B.
Kennedy
, and
R.
Ranjan
,
Phys. Rev. B
92
,
214107
(
2015
).
36.
H. D.
Megaw
and
C. N. W.
Darlington
,
Acta Cryst. B
31
,
161
173
(
1975
).
37.
M.
Hinterstein
,
M.
Knapp
,
M.
Hölzel
,
W.
Jo
,
A.
Cervellino
,
H.
Ehrenbergb
, and
H.
Fuess
,
J. Appl. Cryst.
43
,
1314
1321
(
2010
).
38.
J. L.
Jones
and
M.
Hoffman
,
Appl. Phys. Lett.
89
,
092901
(
2006
).

Supplementary Material

You do not currently have access to this content.