Gallium ferrite (GaFeO3) is a promising multiferroic material for multifunctional device applications. Compared with bulk and thin film materials, nanofibers are possible to magnify the magnetostriction or piezoelectric effect due to their large length–diameter ratio, thus improving the performance of the material. In this work, GaxFe2 – xO3 (GFO) nanofibers have been synthesized by sol-gel based electrospinning. With the increasing Fe ion content, the room-temperature antiferromagnetic to ferromagnetic transition of GFO nanofibers has been confirmed by magnetic hysteresis loops; and the corresponding temperature dependent magnetization curves show that the ferromagnetic–paramagnetic transition temperature (Tc) is above room temperature and increases from around 292 K to above 400 K. Ferroelectricity of GFO nanofibers has been confirmed by second harmonic generation and piezoresponse force microscopy. Magnetoelectric (ME) coupling has been further measured by dual amplitude resonance tracking piezoresponse force microscopy and sequential excitation piezoresponse force microscopy under an in-plane external magnetic field. The newly developed SE-PFM method reduces the crosstalk of morphology, confirming that no obvious intrinsic ME coupling appears in the GFO nanofibers.

1.
N. A.
Spaldin
and
R.
Ramesh
,
Nat. Mater.
18
,
203
212
(
2019
).
2.
J.
Ma
,
J.
Hu
,
Z.
Li
, and
C.
Nan
,
Adv. Mater.
23
,
1062
1087
(
2011
).
3.
S.
Dong
,
J.
Liu
,
S.
Cheong
, and
Z.
Ren
,
Adv. Phys.
64
,
519
626
(
2015
).
4.
M. J.
Han
,
T.
Ozaki
, and
J.
Yu
,
Phys. Rev. B
75
,
060404
(
2007
).
5.
G.
Zhong
,
Y.
Bitla
,
J.
Wang
,
X.
Zhong
,
F.
An
,
Y.
Chin
,
Y.
Zhang
,
W.
Gao
,
Y.
Zhang
,
A.
Eshghinejad
,
E. N.
Esfahani
,
Q.
Zhu
,
C.
Tan
,
X.
Meng
,
H.
Lin
,
X.
Pan
,
S.
Xie
,
Y.
Chu
, and
J.
Li
,
Acta Mater.
145
,
488
495
(
2018
).
6.
J.
Atanelov
and
P.
Mohn
,
Phys. Rev. B
92
,
104408
(
2015
).
7.
T.
Arima
,
D.
Higashiyama
,
Y.
Kaneko
,
J. P.
He
,
T.
Goto
,
S.
Miyasaka
,
T.
Kimura
,
K.
Oikawa
,
T.
Kamiyama
,
R.
Kumai
, and
Y.
Tokura
,
Phys. Rev. B
70
,
064426
(
2004
).
8.
J. P.
Remeika
,
J. Appl. Phys.
31
,
S263
S264
(
1960
).
9.
N. O.
Golosova
,
D. P.
Kozlenko
,
S. E.
Kichanov
,
E. V.
Lukin
,
L. S.
Dubrovinsky
,
A. I.
Mammadov
,
R. Z.
Mehdiyeva
,
S. H.
Jabarov
,
H. P.
Liermann
,
K. V.
Glazyrin
,
T. N.
Dang
,
V. G.
Smotrakov
,
V. V.
Eremkin
, and
B. N.
Savenko
,
J. Alloys Compd.
684
,
352
358
(
2016
).
10.
J.-Y.
Kim
,
T. Y.
Koo
, and
J.-H.
Park
,
Phys. Rev. Lett.
96
,
047205
(
2006
).
11.
S.
Mukherjee
,
A.
Roy
,
S.
Auluck
,
R.
Prasad
,
R.
Gupta
, and
A.
Garg
,
Phys. Rev. Lett.
111
,
087601
(
2013
).
12.
K.
Sharma
,
V.
Raghavendra Reddy
,
A.
Gupta
,
A.
Banerjee
, and
A. M.
Awasthi
,
J. Phys. Condens. Matter
25
,
076002
(
2013
).
13.
Y.
Zheng
and
W.
Chen
,
Phys. Soc.
80
,
086501
(
2017
).
14.
R. N.
Bhowmik
and
A. G.
Lone
,
J. Magn. Magn. Mater.
462
,
105
118
(
2018
).
15.
M.
Mishra
,
A.
Roy
,
A.
Garg
,
R.
Gupta
, and
S.
Mukherjee
,
J. Alloys Compd.
721
,
593
599
(
2017
).
16.
T.
Katayama
,
S.
Yasui
,
Y.
Hamasaki
, and
M.
Itoh
,
Appl. Phys. Lett.
110
,
212905
(
2017
).
17.
B.
Kundys
,
F.
Roulland
,
C.
Lefèvre
,
C.
Mény
,
A.
Thomasson
, and
N.
Viart
,
J. Eur. Ceram. Soc.
35
,
2277
2281
(
2015
).
18.
S.
Song
,
H. M.
Jang
,
N.-S.
Lee
,
J. Y.
Son
,
R.
Gupta
,
A.
Garg
,
J.
Ratanapreechachai
, and
J. F.
Scott
,
Asia Mater.
8
,
1
9
(
2016
).
19.
T.
Subbiah
,
G. S.
Bhat
,
R. W.
Tock
,
S.
Parameswaran
, and
S. S.
Ramkumar
,
J. Appl. Polym. Sci.
96
,
557
569
(
2005
).
20.
S.
Xie
,
J.
Li
,
R.
Proksch
,
Y.
Liu
,
Y.
Zhou
,
Y.
Liu
,
Y.
Ou
,
L.
Lan
, and
Y.
Qiao
,
Appl. Phys. Lett.
93
,
222904
(
2008
).
21.
S. E.
Shirsath
,
D.
Wang
,
S. S.
Jadhav
,
M. L.
Mane
and
S.
Li
, in
Handbook of Sol-Gel Science and Technology
(
Springer
,
2018
), pp.
695
735
.
22.
S. A.
Denev
,
T. T. A.
Lummen
,
E.
Barnes
,
A.
Kumar
, and
V.
Gopalan
,
J. Am. Ceram. Soc.
94
,
2699
2727
(
2011
).
23.
S.
Jesse
,
A. P.
Baddorf
, and
S. V.
Kalinin
,
Appl. Phys. Lett.
88
,
062908
(
2006
).
24.
B. J.
Rodriguez
,
C.
Callahan
,
S. V.
Kalinin
, and
R.
Proksch
,
Nanotechnology
18
,
475504
(
2007
).
25.
F.
Liu
,
L.
You
,
K. L.
Seyler
,
X.
Li
,
P.
Yu
,
J.
Lin
,
X.
Wang
,
J.
Zhou
,
H.
Wang
,
H.
He
,
S. T.
Pantelides
,
W.
Zhou
,
P.
Sharma
,
X.
Xu
,
P. M.
Ajayan
,
J.
Wang
, and
Z.
Liu
,
Nat. Commun.
7
,
12357
(
2016
).
26.
Y.
Zhang
,
Y.
Zhang
,
Q.
Guo
,
X.
Zhong
,
Y.
Chu
,
H.
Lu
,
G.
Zhong
,
J.
Jiang
,
C.
Tan
,
M.
Liao
,
Z.
Lu
,
D.
Zhang
,
J.
Wang
,
J.
Yuan
, and
Y.
Zhou
,
npj Comput. Mater.
4
,
39
(
2018
).
27.
S. V.
Kalinin
,
E.
Karapetian
, and
M.
Kachanov
,
Phys. Rev. B.
70
,
184101
(
2004
).
28.
B.
Huang
,
E. N.
Esfahani
, and
J.
Li
,
Natl. Sci. Rev.
6
,
55
63
(
2019
).
29.
Y.
Liu
,
J.
Seidel
, and
J.
Li
,
Natl. Sci. Rev.
6
,
626
628
(
2019
).
30.
B.
Huang
,
E. N.
Esfahani
,
J.
Yu
,
B. S.
Gerwe
,
S. B.
Adler
, and
J.
Li
,
Nanoscale
11
,
23188
23196
(
2019
).
31.
J.
Li
,
J.
Li
,
Q.
Yu
,
Q. N.
Chen
, and
S.
Xie
,
J. Metrics
1
,
3
21
(
2015
).
32.
A.
Belianinov
,
S. V.
Kalinin
, and
S.
Jesse
,
Nat. Commun.
6
,
6550
(
2015
).
33.
Q. N.
Chen
,
Y.
Ou
,
F.
Ma
, and
J.
Li
,
Appl. Phys. Lett.
104
,
242907
(
2014
).
34.
J.
Yu
,
E. N.
Esfahani
,
Q.
Zhu
,
D.
Shan
,
T.
Jia
,
S.
Xie
, and
J.
Li
,
J. Appl. Phys.
123
,
155104
(
2018
).
35.
M. B.
Mohamed
,
A.
Senyshyn
,
H.
Ehrenberg
, and
H.
Fuess
,
J. Alloys Compd.
492
,
L20
L27
(
2010
).
36.
I.
Raies
,
S. A.
Dulmani
, and
M.
Amami
,
Phys. B Condens. Matter
538
,
1
7
(
2018
).
37.
R.
Saha
,
A.
Shireen
,
A. K.
Bera
,
S. N.
Shirodkar
,
Y.
Sundarayya
,
N.
Kalarikkal
,
S. M.
Yusuf
,
U. V.
Waghmare
,
A.
Sundaresan
, and
C. N. R.
Rao
,
J. Solid State Chem.
184
,
494
501
(
2011
).
38.
K.
Maaz
,
A.
Mumtaz
,
S. K.
Hasanain
, and
A.
Ceylan
,
J. Magn. Magn. Mater.
308
,
289
295
(
2007
).
39.
K.
Mukhopadhyay
,
A. S.
Mahapatra
, and
P. K.
Chakrabarti
,
Phys. Rev. B Condens. Matter
448
,
214
218
(
2014
).
40.
S.
Xie
,
F.
Ma
,
Y.
Liu
, and
J.
Li
,
Nanoscale
3
,
3152
3158
(
2011
).
41.
E.
Nasr Esfahani
,
F.
Ma
,
S.
Wang
,
Y.
Ou
,
J.
Yang
, and
J.
Li
,
Natl. Sci. Rev.
5
,
59
69
(
2018
).

Supplementary Material

You do not currently have access to this content.