Charge carrier trapping in diamond crystals containing well-defined concentrations of dislocations was investigated by several complementary techniques. Samples with dislocation densities ndis between <1 × 107 and ≈1 × 109 cm−2 were grown heteroepitaxially on Ir/YSZ/Si(001). In optical pump–probe experiments, ambipolar diffusion coefficients were determined from the decay of light-induced transient free carrier gratings. Modeling their variation with excitation density yielded trapping cross sections σ of 29 and 10 nm for the dislocations and a stress-field-induced reduction in exciton binding energies from 80 to 73 and 60 meV at ndis = 1 × 108 and 1 × 109 cm−2, respectively. The lifetime measured by induced absorption scaled proportional to 1/ndis with absolute values ranging from 0.1 to 10 ns. In the electrical measurements on two sets of detector slices, electron–hole pairs were excited by α-particles and transport was measured separately for electrons and holes. Both types of carriers showed fast transient current signals. The time constant of the additional slow component exclusively seen for holes was in agreement with the activation energy of boron acceptors. Their concentration of ≈0.5 ppb yielded σ = 1.77 × 10−13 cm2 for charged point traps. Schubweg and carrier lifetime due to deep trapping roughly reproduced the 1/ndis trend. For electrons at 3 V/μm, a value σ = 40 nm was deduced. Cross sections for holes were significantly smaller. Differences in hole trapping between the samples are attributed to charging of dislocations controlled by chemical impurities. Increase in lifetime at high voltages is explained by reduced capture cross sections for hot carriers.

1.
M. A.
Prelas
,
G.
Popovici
, and
L. K.
Bigelow
, in
Handbook of Industrial Diamonds and Diamond Films
(
Marcel Dekker
,
New York
,
1998
).
2.
S.
Koizumi
,
H.
Umezawa
,
J.
Pernot
, and
M.
Suzuki
, in
Power Electronics Device Applications of Diamond Semiconductors
(
Woodhead Publishing
,
Duxford
,
2018
).
3.
E.
Berdermann
, “
Diamond for particle and photon detection in extreme conditions
,” in
Comprehensive Hard Materials
, edited by
V. K.
Sarin
and
C. E.
Nebel
(
Elsevier
,
Oxford
,
2014
), p.
407
.
4.
M.
Schreck
,
J.
Asmussen
,
S.
Shikata
,
J.-C.
Arnault
, and
N.
Fujimori
, “
Large-area high-quality single crystal diamond
,”
MRS Bull.
39
,
504
(
2014
).
5.
Y.
Mokuno
,
A.
Chayahara
, and
H.
Yamada
, “
Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process
,”
Diamond Relat. Mater.
17
,
415
(
2008
).
6.
H.
Yamada
,
A.
Chayahara
,
Y.
Mokuno
,
Y.
Kato
, and
S.
Shikata
, “
A 2-in. mosaic wafer made of a single-crystal diamond
,”
Appl. Phys. Lett.
104
,
102110
(
2014
).
7.
K.
Ohtsuka
,
K.
Suzuki
,
A.
Sawabe
, and
T.
Inuzuka
, “
Epitaxial growth of diamond on iridium
,”
Jpn. J. Appl. Phys.
35
,
L1072
(
1996
).
8.
R.
Brescia
,
M.
Schreck
,
S.
Gsell
,
M.
Fischer
, and
B.
Stritzker
, “
Transmission electron microscopy study of the very early stages of diamond growth on iridium
,”
Diamond Relat. Mater.
17
,
1045
(
2008
).
9.
M.
Schreck
,
S.
Gsell
,
R.
Brescia
, and
M.
Fischer
, “
Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers
,”
Sci. Rep.
7
,
44462
(
2017
).
10.
C.
Stehl
,
M.
Fischer
,
S.
Gsell
,
E.
Berdermann
,
M. S.
Rahman
,
M.
Traeger
,
O.
Klein
, and
M.
Schreck
, “
Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications
,”
Appl. Phys. Lett.
103
,
151905
(
2013
).
11.
B.-C.
Gallheber
,
M.
Fischer
,
M.
Mayr
,
J.
Straub
, and
M.
Schreck
, “
Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111)
,”
J. Appl. Phys.
123
,
225302
(
2018
).
12.
S.
Gsell
,
T.
Bauer
,
J.
Goldfuß
,
M.
Schreck
, and
B.
Stritzker
, “
A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers
,”
Appl. Phys. Lett.
84
,
4541
(
2004
).
13.
S.
Gsell
,
M.
Fischer
,
T.
Bauer
,
M.
Schreck
, and
B.
Stritzker
, “
Yttria-stabilized zirconia films of different composition as buffer layers for the deposition of epitaxial diamond/Ir layers on Si(001)
,”
Diamond Relat. Mater.
15
,
479
(
2006
).
14.
P.
Ščajev
, “
Excitation and temperature dependent exciton-carrier transport in CVD diamond: Diffusion coefficient, recombination lifetime and diffusion length
,”
Physica B
510
,
92
(
2017
).
15.
P.
Ščajev
,
V.
Gudelis
,
E.
Ivakin
, and
K.
Jarašiūnas
, “
Nonequilibrium carrier dynamics in bulk HPHT diamond at two-photon carrier generation
,”
Phys. Status Solidi A
208
,
2067
(
2011
).
16.
P.
Ščajev
,
V.
Gudelis
,
K.
Jarašiūnas
,
I.
Kisialiou
,
E.
Ivakin
,
M.
Nesládek
, and
K.
Haenen
, “
Carrier recombination and diffusivity in microcrystalline CVD-grown and single-crystalline HPHT diamonds
,”
Phys. Status Solidi A
209
,
1744
(
2012
).
17.
M.
Mayr
,
C.
Stehl
,
M.
Fischer
,
S.
Gsell
, and
M.
Schreck
, “
Correlation between surface morphology and defect structure of heteroepitaxial diamond grown on off-axis substrates
,”
Phys. Status Solidi A
211
,
2257
(
2014
).
18.
M.
Mayr
,
M.
Fischer
,
O.
Klein
,
S.
Gsell
, and
M.
Schreck
, “
Interaction between surface structures and threading dislocations during epitaxial diamond growth
,”
Phys. Status Solidi A
212
,
2480
(
2015
).
19.
U. F. S.
D’Haenens-Johansson
,
A. M.
Edmonds
,
B. L.
Green
,
M. E.
Newton
,
G.
Davies
,
P. M.
Martineau
,
R. U. A.
Khan
, and
D. J.
Twitchen
, “
Optical properties of the neutral silicon split-vacancy center in diamond
,”
Phys. Rev. B
84
,
245208
(
2011
).
20.
J.
Barjon
, “
Luminescence spectroscopy of bound excitons in diamond
,”
Phys. Status Solidi A
214
,
1700402
(
2017
).
21.
F.
Omnès
,
P.
Muret
,
P.-N.
Volpe
,
M.
Wade
,
J.
Pernot
, and
F.
Jomard
, “
Study of boron doping in MPCVD grown homoepitaxial diamond layers based on cathodoluminescence spectroscopy, secondary ion mass spectroscopy and capacitance–voltage measurements
,”
Diamond Relat. Mater.
20
,
912
(
2011
).
22.
M.
Kasu
,
M.
Kubovic
,
A.
Aleksov
,
N.
Teofilov
,
Y.
Taniyasu
,
R.
Sauer
,
E.
Kohn
,
T.
Makimoto
, and
N.
Kobayashi
, “
Influence of epitaxy on the surface conduction of diamond film
,”
Diamond Relat. Mater.
13
,
226
(
2004
).
23.
R.
Nelz
,
J.
Görlitz
,
D.
Herrmann
,
A.
Slablab
,
M.
Challier
,
M.
Radtke
,
M.
Fischer
,
S.
Gsell
,
M.
Schreck
,
C.
Becher
, and
E.
Neu
, “
Toward wafer-scale diamond nano- and quantum technologies
,”
APL Mater.
7
,
011108
(
2019
).
24.
P.
Ščajev
,
V.
Gudelis
,
A.
Tallaire
,
J.
Barjon
, and
K.
Jarašiūnas
, “
Injection and temperature dependent carrier recombination rate and diffusion length in freestanding CVD diamond
,”
Phys. Status Solidi A
210
,
2016
(
2013
).
25.
J. F.
Schetzina
and
J. P.
McKelvey
, “
Ambipolar transport of electrons and holes in anisotropic crystals
,”
Phys. Rev. B
2
,
1869
(
1970
).
26.
R. G.
Humphreys
, “
Valence band averages in silicon: Anisotropy and non-parabolicity
,”
J. Phys. C Solid State Phys.
14
,
2935
(
1981
).
27.
M. A.
Green
, “
Intrinsic concentration, effective densities of states, and effective mass in silicon
,”
J. Appl. Phys.
67
,
2944
(
1990
).
28.
N.
Naka
,
K.
Fukai
,
Y.
Handa
, and
I.
Akimoto
, “
Direct measurement via cyclotron resonance of the carrier effective masses in pristine diamond
,”
Phys. Rev. B
88
,
035205
(
2013
).
29.
R. A.
Smith
,
Semiconductors
(
Cambridge University Press
,
Cambridge
,
1978
).
30.
S. M.
Sze
,
Physics of Semiconductor Devices
(
John Wiley
,
New York
,
1981
).
31.
M.
Balkanski
and
R. F.
Wallis
,
Semiconductor Physics and Applications
(
Oxford University Press
,
Oxford
,
2000
).
32.
R. H.
Bube
,
Photoconductivity of Solids
(
John Wiley & Sons
,
New York
,
1960
).
33.
A.
Balducci
,
M.
Marinelli
,
E.
Milani
,
M. E.
Morgada
,
G.
Prestopino
,
M.
Scoccia
,
A.
Tucciarone
, and
G.
Verona-Rinati
, “
Trapping-detrapping defects in single crystal diamond films grown by chemical vapor deposition
,”
Appl. Phys. Lett.
87
,
222101
(
2005
).
34.
A. T.
Collins
, “
p-type conductivity in diamond
,” in
Properties and Growth of Diamond
, edited by
G.
Davies
(
Inspec
,
London
,
1994
), EMIS Data Reviews, p.
273
.
35.
K.
Hecht
, “
Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen
,”
Z. Phys.
77
,
235
(
1932
).
36.
O.
Madelung
,
M.
Schulz
, and
H.
Weiss
, in
Landolt-Börnstein, Semiconductors Physics of Group IV Elements and III-V Compounds
(
Springer
,
Berlin
,
1982
), Vol. 17a.
37.
S.
Fahy
,
K. J.
Chang
,
S. G.
Louie
, and
M. L.
Cohen
, “
Pressure coefficients of band gaps of diamond
,”
Phys. Rev. B
35
,
5856
(
1987
).
38.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
Krieger
,
Malabar
,
FL
,
1992
).
39.
D.
Hull
and
D. J.
Bacon
,
Introduction to Dislocations
, 3rd ed. (
Pergamon
,
Oxford
,
1984
).
40.
Y.
von Kaenel
,
J.
Stiegler
,
J.
Michler
, and
E.
Blank
, “
Stress distribution in heterepitaxial chemical vapor deposited diamond films
,”
J. Appl. Phys.
81
,
1726
(
1997
).
41.
T.
Watanabe
,
T.
Teraji
,
T.
Ito
,
Y.
Kamakura
, and
K.
Taniguchi
, “
Monte Carlo simulations of electron transport properties of diamond in high electric fields using full band structure
,”
J. Appl. Phys.
95
,
4866
(
2004
).
42.
K.
Iakoubovskii
and
G. J.
Adriaenssens
, “
Luminescence excitation spectra in diamond
,”
Phys. Rev. B
61
,
10174
(
2000
).
43.
H.
Kawashima
,
H.
Noguchi
,
T.
Matsumoto
,
H.
Kato
,
M.
Ogura
,
T.
Makino
,
S.
Shirai
,
D.
Takeuchi
, and
S.
Yamasaki
, “
Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates
,”
Appl. Phys. Express
8
,
104103
(
2015
).
44.
K.
Ichikawa
,
K.
Kurone
,
H.
Kodama
,
K.
Suzuki
, and
A.
Sawabe
, “
High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir
,”
Diamond Relat. Mater.
94
,
92
(
2019
).
45.
S.
Ohmagari
,
H.
Yamada
,
N.
Tsubouchi
,
H.
Umezawa
,
S.
Chayahara
,
Y.
Mokuno
, and
D.
Takeuchi
, “
Toward high-performance diamond electronics: Control and annihilation of dislocation propagation by metal-assisted termination
,”
Phys. Status Solidi A
216
,
1900498
(
2019
).
46.
J.
Bardeen
and
W.
Shockley
, “
Deformation potentials and mobilities in non-polar crystals
,”
Phys. Rev.
80
,
72
(
1950
).
47.
D.
Jena
and
U. K.
Mishra
, “
Effect of scattering by strain fields surrounding edge dislocations on electron transport in two-dimensional electron gases
,”
Appl. Phys. Lett.
80
,
64
(
2002
).
48.
J.
Hammersberg
,
S.
Majdi
,
K. K.
Kovi
,
N.
Suntornwipat
,
M.
Gabrysch
,
D. J.
Twitchen
, and
J.
Isberg
, “
Stability of polarized states for diamond valleytronics
,”
Appl. Phys. Lett.
104
,
232105
(
2014
).
49.
C. A.
Klein
and
G. F.
Cardinale
, “
Young’s modulus and Poisson’s ratio of CVD diamond
,”
Diamond Relat. Mater.
2
,
918
(
1993
).
You do not currently have access to this content.