Rare earth orthoferrites demonstrate great application potentials in spintronics and optical devices due to their multiferroic and magnetooptical properties. In RFeO3, magnetic R3+ undergo a spontaneous spin reorientation in a temperature range determined by R (rare earth), where the magnetic structure changes from Γ2 to Γ4. The b-axis component of their magnetic moment, Mb, is reported in numerous neutron diffraction studies to remain zero at all temperatures. More sensitive magnetometer measurements reveal a small non-zero Mb, which is minute above ∼200 K. Mb increases with cooling and reaches values of ∼10–3μB/f.u. at temperatures within or below the spin reorientation temperatures. Our results can be explained by assuming the Fe3+ spins as the origin of non-zero Mb, while R3+ spins suppress Mb. The representation analysis of point groups shows that non-zero Mb is associated with a small admixture of the Γ3 phase to Γ2 or Γ4. Such a mixing of the three magnetic phases requires at least a fourth order of the spin Hamiltonian for RFeO3 to describe the non-zero Mb.

1.
Y.
Tokunaga
,
S.
Iguchi
,
T.
Arima
, and
Y.
Tokura
,
Phys. Rev. Lett.
101
,
097205
(
2008
).
2.
J. H.
Lee
,
Y. K.
Jeong
,
J. H.
Park
,
M. A.
Oak
,
H. M.
Jang
,
J. Y.
Son
, and
J. F.
Scott
,
Phys. Rev. Lett.
107
,
117201
(
2011
).
3.
E.
Bousquet
and
A.
Cano
,
J. Phys. Condens. Matter
28
,
123001
(
2016
).
4.
E.
Bousquet
and
N.
Spaldin
,
Phys. Rev. Lett.
107
,
197603
(
2011
).
5.
H. J.
Zhao
,
L.
Bellaiche
,
X. M.
Chen
, and
J.
Íñiguez
,
Nat. Commun.
8
,
14025
(
2017
).
6.
H.
Katsura
,
N.
Nagaosa
, and
A. V.
Balatsky
,
Phys. Rev. Lett.
95
,
057205
(
2005
).
7.
A.
Kimel
,
B.
Ivanov
,
R.
Pisarev
,
P.
Usachev
,
A.
Kirilyuk
, and
T.
Rasing
,
Nat. Phys.
5
,
727
(
2009
).
8.
S.
Wienholdt
,
D.
Hinzke
, and
U.
Nowak
,
Phys. Rev. Lett.
108
,
247207
(
2012
).
9.
M. R.
Freeman
and
Z.
Diao
,
Nat. Photonics
6
,
643
(
2012
).
10.
S.
Mangin
,
D.
Ravelosona
,
J.
Katine
,
M.
Carey
,
B.
Terris
, and
E. E.
Fullerton
,
Nat. Mater.
5
,
210
(
2006
).
11.
T.
Seifert
 et al.,
Nat. Photonics
10
,
483
(
2016
).
12.
R. L.
White
,
J. Appl. Phys.
40
,
1061
(
1969
).
13.
M.
Eibschütz
,
S.
Shtrikman
, and
D.
Treves
,
Phys. Rev.
156
,
562
(
1967
).
14.
T.
Yamaguchi
,
J. Phys. Chem. Solids
35
,
479
(
1974
).
15.
16.
E.
Wollan
and
W.
Koehler
,
Phys. Rev.
100
,
545
(
1955
).
17.
E.
Bertaut
,
J. Appl. Phys.
33
,
1138
(
1962
).
18.
I.
Dzyaloshinsky
,
J. Phys. Chem. Solids
4
,
241
(
1958
).
19.
20.
L.
Bellaiche
,
Z.
Gui
, and
I. A.
Kornev
,
J. Phys. Condens. Matter
24
,
312201
(
2012
).
21.
K. P.
Belov
,
A. K.
Zvezdin
,
A. M.
Kadomtseva
, and
R.
Levitin
,
Sov. Phys. Usp.
19
,
574
(
1976
).
22.
D.
Treves
,
J. Appl. Phys.
36
,
1033
(
1965
).
23.
L.
Tsymbal
,
V.
Kamenev
,
Y. B.
Bazaliy
,
D.
Khara
, and
P.
Wigen
,
Phys. Rev. B
72
,
052413
(
2005
).
24.
L.
Tsymbal
,
Y. B.
Bazaliı˘
,
G.
Kakazeı˘
,
Y. I.
Nepochatykh
, and
P.
Wigen
,
Low Temp. Phys.
31
,
277
(
2005
).
25.
L. T.
Tsymbal
,
Y. B.
Bazaliy
,
V. N.
Derkachenko
,
V. I.
Kamenev
,
G. N.
Kakazei
,
F. J.
Palomares
, and
P. E.
Wigen
,
J. Appl. Phys.
101
,
123919
(
2007
).
26.
E.
Gyorgy
,
J.
Remeika
, and
F.
Hagedorn
,
J. Appl. Phys.
39
,
1369
(
1968
).
27.
D.
Georgiev
,
K.
Krezhov
, and
V.
Nietz
,
Solid State Commun.
96
,
535
(
1995
).
28.
J.
Bartolomé
,
E.
Palacios
,
M.
Kuz’min
,
F.
Bartolomé
,
I.
Sosnowska
,
R.
Przeniosło
,
R.
Sonntag
, and
M.
Lukina
,
Phys. Rev. B
55
,
11432
(
1997
).
29.
W.
Sławiński
,
R.
Przeniosło
,
I.
Sosnowska
, and
E.
Suard
,
J. Phys. Condens. Matter
17
,
4605
(
2005
).
30.
R.
Hornreich
and
I.
Yaeger
,
Int. J. Magn.
4
,
6
(
1973
).
31.
X.-P.
Yuan
,
Y.-K.
Tang
,
Y.
Sun
, and
M.-X.
Xu
,
J. Appl. Phys.
111
,
053911
(
2012
).
32.
Y.
Tokunaga
,
N.
Furukawa
,
H.
Sakai
,
Y.
Taguchi
,
T.-H.
Arima
, and
Y.
Tokura
,
Nat. Mater.
8
,
558
(
2009
).
33.
T.
Chatterji
,
A.
Stunault
, and
P.
Brown
,
J. Phys. Condens. Matter
29
,
385802
(
2017
).
34.
H.
Pinto
and
H.
Shaked
,
Solid State Commun.
10
,
663
(
1972
).
35.
E.
Bertaut
,
Acta Crystallogr. A
24
,
217
(
1968
).
36.
H.
Shen
,
J.
Xu
,
M.
Jin
, and
G.
Jiang
,
Ceram. Int.
38
,
1473
(
2012
).
37.
M.
Shang
,
C.
Zhang
,
T.
Zhang
,
L.
Yuan
,
L.
Ge
,
H.
Yuan
, and
S.
Feng
,
Appl. Phys. Lett.
102
,
062903
(
2013
).
38.
I.
Jacobs
,
H. F.
Burne
, and
L. M.
Levinson
,
J. Appl. Phys.
42
,
1631
(
1971
).
39.
G.
Song
,
J.
Jiang
,
B.
Kang
,
J.
Zhang
,
Z.
Cheng
,
G.
Ma
, and
S.
Cao
,
Solid State Commun.
211
,
47
(
2015
).
40.
S.
Yuan
,
Y.
Wang
,
M.
Shao
,
F.
Chang
,
B.
Kang
,
Y.
Isikawa
, and
S.
Cao
,
J. Appl. Phys.
109
,
07E141
(
2011
).
41.
W.
Koehler
,
E.
Wollan
, and
M.
Wilkinson
,
Phys. Rev.
118
,
58
(
1960
).
42.
H.
Shen
,
Z.
Cheng
,
F.
Hong
,
J.
Xu
,
S.
Yuan
,
S.
Cao
, and
X.
Wang
,
Appl. Phys. Lett.
103
,
192404
(
2013
).
43.
R.
Przeniosło
,
I.
Sosnowska
,
M.
Loewenhaupt
, and
A.
Taylor
,
J. Magn.
Magn. Mater.
140
,
2151
(
1995
).
44.
S.
Yuan
,
W.
Ren
,
F.
Hong
,
Y.
Wang
,
J.
Zhang
,
L.
Bellaiche
,
S.
Cao
, and
G.
Cao
,
Phys. Rev. B
87
,
184405
(
2013
).
45.
H.
Shen
,
J.
Xu
,
A.
Wu
,
J.
Zhao
, and
M.
Shi
,
Mater. Sci. Eng. B
157
,
77
(
2009
).
46.
Y. B.
Bazaliy
,
L.
Tsymbal
,
G.
Kakazei
,
A.
Izotov
, and
P.
Wigen
,
Phys. Rev. B
69
,
104429
(
2004
).
47.
G.
Deng
,
P.
Guo
,
W.
Ren
,
S.
Cao
,
H. E.
Maynard-Casely
,
M.
Avdeev
, and
G. J.
McIntyre
,
J. Appl. Phys.
117
,
164105
(
2015
).
48.
A.
Balbashov
,
G.
Kozlov
,
S.
Lebedev
,
A.
Mukhin
,
A. Y.
Pronin
, and
A.
Prokhorov
,
JETP Lett.
95
,
1092
(
1989
).
49.
G.
Vorob’ev
,
A.
Kadomtseva
,
I.
Krynetkii
, and
A.
Mukhin
,
Sov. Phys. JETP
95
,
1049
(
1989
).
50.
Z.
Zhao
,
X.
Zhao
,
H.
Zhou
,
F.
Zhang
,
Q.
Li
,
C.
Fan
,
X.
Sun
, and
X.
Li
,
Phys. Rev. B
89
,
224405
(
2014
).
51.
S.
Bujko
,
D.
Georgiev
,
K.
Krezhov
,
V.
Nietz
, and
G.
Passage
,
J. Phys. Condens. Matter
7
,
8099
(
1995
).
You do not currently have access to this content.