Near-infrared (NIR) light with a wavelength of 650–950 nm is used for various biomedical applications. Although NIR emitters are typically based on GaAs-related materials, they contain toxic elements, and the emission wavelength can easily shift during the device operation due to temperature changes and current injection levels. On the other hand, Tm3+, which is one of the rare-earth ions, can generate ultra-stable NIR luminescence with a wavelength of 800nm, based on 3H43H6 transitions in a 4f shell, and we have recently focused on Tm-doped GaN (GaN:Tm) based light-emitting diodes (LEDs) as novel NIR emitters. In this paper, we present a demonstration of a NIR-LED based on GaN:Tm grown by the organometallic vapor phase epitaxy method with optimized growth conditions and structures, where the parasitic reaction is well suppressed. NIR luminescence from the GaN:Tm-based LED is derived from 3H43H6 transitions of Tm3+ ions and consists of three dominant peaks at 795, 806, and 814 nm. The turn-on voltage of the NIR-LED is 6.9 V, and it is significantly lower than the previously reported electroluminescent devices based on GaN:Tm with impact ionization processes. From a current dependence of the electroluminescence spectra and temperature-dependent photoluminescence for the NIR-LED, the peak shifts are determined to be <7.6 pm/mA and 1.3 pm/K, respectively.

1.
R.
Weissleder
,
Nat. Biotechnol.
19
,
316
(
2001
).
2.
D. M.
Shcherbakova
and
V. V.
Verkhusha
,
Nat. Methods
10
,
751
(
2013
).
3.
S.
Nioka
and
B.
Chance
,
Technol. Cancer Res. Treat.
4
,
497
(
2005
).
4.
M.
Mitsunaga
,
M.
Ogawa
,
N.
Kosaka
,
L. T.
Rosenblum
,
P. L.
Choyke
, and
H.
Kobayashi
,
Nat. Med.
17
,
1685
(
2011
).
5.
K.
Nakajima
,
T.
Kimura
,
H.
Takakura
,
Y.
Yoshikawa
,
A.
Kameda
,
T.
Shindo
,
K.
Sato
,
H.
Kobayashi
, and
M.
Ogawa
,
Oncotarget
9
,
20048
(
2018
).
6.
W.
Aung
,
A. B.
Tsuji
,
A.
Sugyo
,
H.
Takashima
,
M.
Yasunaga
,
Y.
Matsumura
, and
T.
Higashi
,
World J. Gastroenterol.
24
,
5491
(
2018
).
7.
J. A.
Pologe
,
Int. Anesthesiol. Clin.
25
,
137
(
1987
).
8.
Y.
Mendelson
,
Clin. Chem.
38
,
1601
(
1992
).
9.
L. G.
Lindberg
,
C.
Lennmarken
, and
M.
Vegfors
,
Acta Anaesthesiol. Scand.
39
,
279
(
1995
).
10.
D. S.
Jiang
,
H.
Jung
, and
K.
Ploog
,
J. Appl. Phys.
64
,
1371
(
1988
).
11.
P. A.
Chen
,
C.
Juang
, and
C. Y.
Chang
,
IEEE J. Quantum Electron.
29
,
2607
(
1993
).
12.
A.
Ramos-Ruiz
,
J. A.
Field
,
W.
Sun
, and
R.
Sierra-Alvarez
,
Waste Manag.
77
,
1
(
2018
).
13.
T. A.
Lewis
,
C. B.
Hartmann
, and
K. L.
McCoy
,
J. Immunol.
161
,
2151
(
1998
).
14.
M.
Harrison
and
K. L.
McCoy
,
Int. Immunopharmacol.
1
,
647
(
2001
).
15.
R.
Singh
,
D.
Doppalapudi
,
T. D.
Moustakas
, and
L. T.
Romano
,
Appl. Phys. Lett.
70
,
1089
(
1997
).
16.
S.
Nakamura
,
Science
281
,
956
(
1998
).
17.
O.
Goede
,
L.
John
, and
D.
Hennig
,
Phys. Status Solidi B
89
,
K183
(
1978
).
18.
E. F.
Schubert
,
E. O.
Göbel
,
Y.
Horikoshi
,
K.
Ploog
, and
H. J.
Queisser
,
Phys. Rev. B
30
,
813
(
1984
).
19.
G.
Coli
,
K. K.
Bajaj
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
78
,
1829
(
2001
).
20.
S.
Ichikawa
,
Y.
Iwata
,
M.
Funato
,
S.
Nagata
, and
Y.
Kawakami
,
Appl. Phys. Lett.
104
,
252102
(
2014
).
21.
A.
Nishikawa
,
T.
Kawasaki
,
N.
Furukawa
,
Y.
Terai
, and
Y.
Fujiwara
,
Appl. Phys. Express
2
,
071004
(
2009
).
22.
A. J.
Steckl
,
J. H.
Park
, and
J. M.
Zavada
,
Mater. Today
10
,
20
(
2007
).
23.
A. J.
Steckl
,
M.
Garter
,
D. S.
Lee
,
J.
Heikenfeld
, and
R.
Birkhahn
,
Appl. Phys. Lett.
75
,
2184
(
1999
).
24.
J. H.
Kim
,
M. R.
Davidson
, and
P. H.
Holloway
,
Appl. Phys. Lett.
83
,
4746
(
2003
).
25.
D. S.
Lee
and
A. J.
Steckl
,
Appl. Phys. Lett.
83
,
2094
(
2003
).
26.
U.
Hommerich
,
E. E.
Nyein
,
D. S.
Lee
,
A. J.
Steckl
, and
J. M.
Zavada
,
Appl. Phys. Lett.
83
,
4556
(
2003
).
27.
J.
Takatsu
,
R.
Fuji
,
J.
Tatebayashi
,
D.
Timmerman
,
A.
Lesage
,
T.
Gregorkiewicz
, and
Y.
Fujiwara
,
J. Appl. Phys.
123
,
161406
(
2018
).
28.
D.
Zhao
,
J.
Zhu
,
D.
Jiang
,
H.
Yang
,
J.
Liang
,
X.
Li
, and
H.
Gong
,
J. Cryst. Growth
289
,
72
(
2006
).
29.
J.
Stellmach
,
M.
Pristovsek
,
O.
Savaş
,
J.
Schlegel
,
E.
Yakovlev
, and
M.
Kneissl
,
J. Cryst. Growth
315
,
229
(
2011
).
30.
S.
Ichikawa
,
M.
Funato
, and
Y.
Kawakami
,
J. Cryst. Growth
522
,
68
(
2019
).
31.
C. G.
Van de Walle
,
Phys. Rev. B
68
,
165209
(
2003
).
32.
T.
Kozawa
,
T.
Kachi
,
H.
Kano
,
H.
Nagase
,
N.
Koide
, and
K.
Manabe
,
J. Appl. Phys.
77
,
4389
(
1995
).
33.
C.
Dunn
and
E.
Kogh
,
Acta Metall.
5
,
548
(
1957
).
34.
M. A.
Reshchikov
and
H.
Morkoç
,
J. Appl. Phys.
97
,
061301
(
2005
).
35.
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
97
,
152108
(
2010
).
36.
B.
Mitchell
,
V.
Dierolf
,
T.
Gregorkiewicz
, and
Y.
Fujiwara
,
J. Appl. Phys.
123
,
160901
(
2018
).
37.
B.
Mitchell
,
D.
Timmerman
,
J.
Poplawsky
,
W.
Zhu
,
D.
Lee
,
R.
Wakamatsu
,
J.
Takatsu
,
M.
Matsuda
,
W.
Guo
,
K.
Lorenz
,
E.
Alves
,
A.
Koizumi
,
V.
Dierolf
, and
Y.
Fujiwara
,
Sci. Rep.
6
,
18808
(
2016
).
38.
D. J.
Kim
,
D. Y.
Ryu
,
N. A.
Bojarczuk
,
J.
Karasinski
,
S.
Guha
,
S. H.
Lee
, and
J. H.
Lee
,
J. Appl. Phys.
88
,
2564
(
2000
).
39.
Y.
Nakano
and
T.
Jimbo
,
J. Appl. Phys.
92
,
5590
(
2002
).
You do not currently have access to this content.