Exploring the behavior of hydrocarbon under pressure is important for understanding its role in planetary sciences and also for exploring novel organic chemistry. In this study, we explored the high-pressure behavior of a linear-chain hydrocarbon, tricosane (C23H48), using Raman spectroscopy. We compressed tricosane up to 23 GPa and did not find any evidence for pressure-induced amorphization within the conditions explored in this study. Upon compression, we observe new modes in the low energy region 100–300 cm−1. In order to understand the appearance of these new modes at high pressures, we used complementary ab initio calculations and explored the effect of chain configurations (linear and bent) on the predicted Raman spectra. We find that these new modes observed at higher pressures are better explained by bent configuration of tricosane chains. Thus, based on high-pressure Raman spectra, it is very likely that a linear chain of tricosane is bent under pressure, i.e., it undergoes a pressure-induced trans-gauche transformation. It is also likely that such bent regions (i.e., kinks) will act as sites along which large chain hydrocarbons could dissociate into smaller chain lengths at extreme conditions relevant to the interiors of Jovian planets.

2.
I.
de Pater
and
J. J.
Lissauer
,
Planetary Sciences
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2015
).
3.
W. B.
Hubbard
,
W. J.
Nellis
,
A. C.
Mitchell
,
N. C.
Holmes
,
S. S.
Limaye
, and
P. C.
McCandless
,
Science
253
,
648
(
1991
).
4.
N.
Madhusudhan
,
M.
Agúndez
,
J. I.
Moses
, and
Y.
Hu
,
Space Sci. Rev.
205
,
285
(
2016
).
5.
G.
Gao
,
A. R.
Oganov
,
Y.
Ma
,
H.
Wang
,
P.
Li
,
Y.
Li
,
T.
Iitaka
, and
G.
Zou
,
J. Chem. Phys.
133
,
144508
(
2010
).
6.
J.
Sun
,
X.
Dong
,
Y.
Wang
,
K.
Li
,
H.
Zheng
,
L.
Wang
,
G. D.
Cody
,
C. A.
Tulk
,
J. J.
Molaison
,
X.
Lin
,
Y.
Meng
,
C.
Jin
, and
H.
Mao
,
Angew. Chemie Int. Ed.
56
,
6553
(
2017
).
7.
H.
Zheng
,
K.
Li
,
G. D.
Cody
,
C. A.
Tulk
,
X.
Dong
,
G.
Gao
,
J. J.
Molaison
,
Z.
Liu
,
M.
Feygenson
,
W.
Yang
,
I. N.
Ivanov
,
L.
Basile
,
J.-C.
Idrobo
,
M.
Guthrie
, and
H.
Mao
,
Angew. Chemie Int. Ed.
55
,
12040
(
2016
).
8.
B.
Chen
,
R.
Hoffmann
,
N. W.
Ashcroft
,
J.
Badding
,
E.
Xu
, and
V.
Crespi
,
J. Am. Chem. Soc.
137
,
14373
(
2015
).
9.
T. C.
Fitzgibbons
,
M.
Guthrie
,
E.
Xu
,
V. H.
Crespi
,
S. K.
Davidowski
,
G. D.
Cody
,
N.
Alem
, and
J. V.
Badding
,
Nat. Mater.
14
,
43
(
2015
).
10.
M. S.
Somayazulu
,
L. W.
Finger
,
R. J.
Hemley
, and
H. K.
Mao
,
Science
271
,
1400
(
1996
).
11.
L.
Sun
,
A. L.
Ruoff
,
C.-S.
Zha
, and
G.
Stupian
,
J. Phys. Chem. Solids
67
,
2603
(
2006
).
12.
L.
Sun
,
Z.
Zhao
,
A. L.
Ruoff
,
C.-S.
Zha
, and
G.
Stupian
,
J. Phys. Condens. Matter
19
,
425206
(
2007
).
13.
L.
Sun
,
W.
Yi
,
L.
Wang
,
J.
Shu
,
S.
Sinogeikin
,
Y.
Meng
,
G.
Shen
,
L.
Bai
,
Y.
Li
,
J.
Liu
,
H.
Mao
, and
W. L.
Mao
,
Chem. Phys. Lett.
473
,
72
(
2009
).
14.
M. A.
Puerto
and
N. M.
Balzaretti
,
Vib. Spectrosc.
75
,
93
(
2014
).
15.
D.
Kraus
,
J.
Vorberger
,
A.
Pak
,
N. J.
Hartley
,
L. B.
Fletcher
,
S.
Frydrych
,
E.
Galtier
,
E. J.
Gamboa
,
D. O.
Gericke
,
S. H.
Glenzer
,
E.
Granados
,
M. J.
MacDonald
,
A. J.
MacKinnon
,
E. E.
McBride
,
I.
Nam
,
P.
Neumayer
,
M.
Roth
,
A. M.
Saunders
,
A. K.
Schuster
,
P.
Sun
,
T.
van Driel
,
T.
Döppner
, and
R. W.
Falcone
,
Nat. Astron.
1
,
606
(
2017
).
16.
S. S.
Lobanov
,
P.-N.
Chen
,
X.-J.
Chen
,
C.-S.
Zha
,
K. D.
Litasov
,
H.-K.
Mao
, and
A. F.
Goncharov
,
Nat. Commun.
4
,
2446
(
2013
).
17.
A.
Zerr
,
G.
Serghiou
,
R.
Boehler
, and
M.
Ross
,
High Press. Res.
26
,
23
(
2006
).
18.
M.
Dirand
,
M.
Bouroukba
,
V.
Chevallier
,
D.
Petitjean
,
E.
Behar
, and
V.
Ruffier-Meray
,
J. Chem. Eng. Data
47
,
115
(
2002
).
19.
Y.
Akahama
and
H.
Kawamura
,
J. Appl. Phys.
96
,
3748
(
2004
).
20.
M. J. D. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
, and
B.
Mennucci
,
Hratch
, Gaussian 09 (
Gaussian, Inc.
,
Wallingford CT
,
2009
); available at https://gaussian.com/glossary/g09/
21.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
22.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
23.
P.
Vandenabeele
,
Practical Raman Spectroscopy—An Introduction
(
John Wiley & Sons, Ltd
,
Chichester
,
2013
).
24.
R. L.
Flurry
and
S. F.
Abdulnur
,
J. Mol. Spectrosc.
63
,
33
(
1976
).
25.
H. G.
Edwards
and
M. J.
Falk
,
Spectrochim. Acta Part A
53
,
2685
(
1997
).
26.
K.
Kalyanasundaram
and
J. K.
Thomas
,
J. Phys. Chem.
80
,
1462
(
1976
).
27.
M.
Zheng
and
W.
Du
,
Vib. Spectrosc.
40
,
219
(
2006
).
28.
C.-K.
Wu
and
M.
Nicol
,
Chem. Phys. Lett.
24
,
395
(
1974
).
29.
R. A.
MacPhail
,
H. L.
Strauss
,
R. G.
Snyder
, and
C. A.
Elliger
,
J. Phys. Chem.
88
,
334
(
1984
).
30.
S.
Mizushima
and
T.
Simanouti
,
J. Am. Chem. Soc.
71
,
1320
(
1949
).
31.
C.
Wu
and
M.
Nicol
,
J. Chem. Phys.
58
,
5150
(
1973
).
32.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
2005
).
33.
C. H.
Warren
and
D. L.
Hooper
,
Can. J. Chem.
51
,
3901
(
1973
).
34.
N. O. B.
Lüttschwager
,
T. N.
Wassermann
,
R. A.
Mata
, and
M. A.
Suhm
,
Angew. Chemie Int. Ed.
52
,
463
(
2013
).
35.
A.
Basu
,
A.
Chandra
,
A. K.
Tyagi
, and
G. D.
Mukherjee
,
J. Phys. Condens. Matter
24
,
115404
(
2012
).
36.
A.
Basu
,
R.
Jana
,
R.
Ranjan
, and
G. D.
Mukherjee
,
Phys. Rev. B
93
,
214114
(
2016
).
37.
J. M.
Goodman
,
J. Chem. Inf. Comput. Sci.
37
,
876
(
1997
).
38.
L. L.
Thomas
,
T. J.
Christakis
, and
W. L.
Jorgensen
,
J. Phys. Chem. B
110
,
21198
(
2006
).
39.
W. A.
Herrebout
,
B. J.
van der Veken
,
A.
Wang
, and
J. R.
Durig
,
J. Phys. Chem.
99
,
578
(
1995
).
40.
S. J.
Weiner
,
P. A.
Kollman
,
U. C.
Singh
,
D. A.
Case
,
C.
Ghio
,
G.
Alagona
,
S.
Profeta
, and
P.
Weiner
,
J. Am. Chem. Soc.
106
,
765
(
1984
).
41.
N. L.
Allinger
,
Y. H.
Yuh
, and
J. H.
Lii
,
J. Am. Chem. Soc.
111
,
8551
(
1989
).
42.
N. O. B.
Lüttschwager
and
M. A.
Suhm
,
Soft Matter
10
,
4885
(
2014
).
43.
N. O. B.
Lüttschwager
,
Raman Spectroscopy of Conformational Rearrangements at Low Temperatures
(
Springer
,
Cham
,
2014
), pp.
37
117
.
44.
J. N.
Byrd
,
R. J.
Bartlett
, and
J. A.
Montgomery
,
J. Phys. Chem. A
118
,
1706
(
2014
).
45.
D. G.
Liakos
and
F.
Neese
,
J. Chem. Theory Comput.
11
,
2137
(
2015
).
46.
S.
Knippenberg
,
Y. R.
Huang
,
B.
Hajgató
,
J. P.
Fraņois
,
J. K.
Deng
, and
M. S.
Deleuze
,
J. Chem. Phys.
127
,
174306
(
2007
).
48.
L. R.
Benedetti
,
J. H.
Nguyen
,
W. A.
Caldwell
,
H.
Liu
,
M.
Kruger
, and
R.
Jeanloz
,
Science
286
,
100
(
1999
).

Supplementary Material

You do not currently have access to this content.