Defects in Mg ion-implanted GaN epitaxial layers formed after annealing at 1573 K and at 1753 K were analyzed by transmission electron microscopy. Degradation of the GaN surface, which occurs at temperatures higher than about 1573 K, was avoided by ultra-high-pressure annealing under a N2 atmosphere at 1 GPa. Annealing for damage recovery in ion-implanted compound semiconductors generally requires temperatures at about two-thirds of their melting point, which is reportedly 2518 K or higher for GaN. Thus, defect analysis in ion-implanted GaN annealed at temperatures higher than 1573 K is necessary to understand the defect recovery. Atomic-resolution transmission electron microscopy analysis showed that interstitial-type extended defects and inversion domains with Mg segregation were formed during the annealing at 1573 K. These defects were not observed in a sample annealed at 1753 K; instead, vacancy-type extended defects were formed. Such evolution of defects can be explained by previous theoretical studies that indicated that the migration energy of vacancy-type defects is higher than that of interstitial-type defects. Moreover, the formation of vacancy-type extended defects implies a reduction in the concentrations of vacancies and their complexes. Since the vacancies and their complexes can compensate for Mg acceptors, their reduced concentration should increase the acceptor activation efficiency. Also, the disappearance of Mg segregation during high-temperature annealing should increase the activation efficiency since the segregated Mg atoms are electrically inactive. It is thus concluded that the evolution of defects caused by high-temperature annealing above 1573 K increases the activation efficiency of acceptors in Mg ion-implanted GaN.

1.
J. F.
Remini
,
Ion Implantation: Basics and Device Fabrication
(
Springer
,
New York
,
1995
).
2.
J. W.
Mayer
,
L.
Eriksson
, and
J. A.
Davies
,
Ion Implantation in Semiconductors: Silicon and Germanium
(
Academic Press
,
New York
,
1970
).
3.
S. J.
Pearton
,
C. B.
Vartuli
,
J. C.
Zolper
,
C.
Yuan
, and
R. A.
Stall
,
Appl. Phys. Lett.
67
,
1435
(
1995
).
4.
J. C.
Zolper
,
M. H.
Crawford
,
S. J.
Pearton
,
C. R.
Abernathy
,
C. B.
Vartuli
,
C.
Yuan
, and
R. A.
Stall
,
J. Electron. Mater.
25
,
839
(
1996
).
5.
B. J.
Skrommeand
and
G. L.
Martinez
,
Mater. Res. Soc. Symp.
595
,
W9.8
(
1999
).
6.
X. A.
Cao
,
R. G.
Wilson
,
J. C.
Zolper
,
S. J.
Pearton
,
J.
Han
,
R. J.
Shul
,
D. J.
Rieger
,
R. K.
Singh
,
M.
Fu
,
V.
Scarvepalli
,
J. A.
Sekhar
, and
J. M.
Zavada
,
J. Electron. Mater.
28
,
261
(
1999
).
7.
C.
Ronning
,
E. P.
Carlson
, and
R. F.
Davis
,
Phys. Rep.
351
,
349
(
2001
).
8.
M.
Kanechika
,
M.
Sugimoto
,
N.
Soejima
,
H. I.
Ueda
,
O.
Ishiguro
,
M.
Kodama
,
E.
Hayashi
,
K.
Itoh
,
T.
Uesugi
, and
T.
Kachi
,
Jpn. J. Appl. Phys.
46
,
L503
(
2007
).
9.
S. G.
Sundaresan
,
M.
Murthy
,
M. V.
Rao
,
J. A.
Schreifels
,
M. A.
Mastro
,
C. R.
Eddy
, Jr.
,
R. T.
Holm
,
R. L.
Henry
,
J. A.
Freitas
, Jr.
,
E.
Gomar-Nadal
,
R. D.
Vispute
, and
Y.-L.
Tian
,
Semicond. Sci. Technol.
22
,
1151
(
2007
).
10.
B. N.
Feigelson
,
T. J.
Anderson
,
M.
Abraham
,
J. A.
Freitas
,
J. K.
Hite
,
C. R.
Eddy
, and
F. J.
Kub
,
J. Cryst. Growth
350
,
21
(
2012
).
11.
S.
Matsunaga
,
S.
Yoshida
,
T.
Kawaji
, and
T.
Inada
,
J. Appl. Phys.
95
,
2461
(
2004
).
12.
T. J.
Anderson
,
B. N.
Feigelson
,
F. J.
Kub
,
M. J.
Tadjer
,
K. D.
Hobart
,
M. A.
Mastro
,
J. K.
Hite
, and
C. R.
Eddy
, Jr.
,
Electron. Lett.
50
,
197
(
2014
).
13.
J. D.
Greenlee
,
B. N.
Feigelson
,
T. J.
Anderson
,
J. K.
Hite
,
K. D.
Hobart
, and
F. J.
Kub
,
ECS J. Solid State Sci. Technol.
4
,
382
(
2015
).
14.
A.
Uedono
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
,
H.
Matsuyama
,
H.
Kudo
,
H.
Naramoto
, and
S.
Ishibashi
,
Phys. Status Solidi B
252
,
2794
(
2015
).
15.
T.
Oikawa
,
Y.
Saijo
,
S.
Kato
,
T.
Mishima
, and
T.
Nakamura
,
Nucl. Instrum. Methods Phys. Res. B
365
,
168
(
2015
).
16.
T. J.
Anderson
,
J. D.
Greenlee
,
B. N.
Feigelson
,
J. K.
Hite
,
F. J.
Kub
, and
K. D.
Hobart
,
ECS J.Solid State Sci. Technol.
5
,
Q176
(
2016
).
17.
T.
Narita
,
T.
Kachi
,
K.
Kataoka
, and
T.
Uesugi
,
Appl. Phys. Express
10
,
016501
(
2017
).
18.
T.
Niwa
,
T.
Fujii
, and
T.
Oka
,
Appl. Phys. Express
10
,
091002
(
2017
).
19.
K.
Kojima
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
,
M.
Shimizu
,
T.
Takahashi
,
S.
Ishibashi
,
A.
Uedono
, and
S. F.
Chichibu
,
Appl. Phys. Express
10
,
061002
(
2017
).
20.
U.
Wahl
,
L. M.
Amorim
,
V.
Augustyns
,
A.
Costa
,
E.
David-Bosne
,
T. A. L.
Lima
,
G.
Lippertz
,
J. G.
Correia
,
M. R.
da Silva
,
M. J.
Kappers
,
K.
Temst
,
A.
Vantomme
, and
L. M. C.
Pereira
,
Phys. Rev. Lett.
118
,
095501
(
2017
).
21.
A.
Kumar
,
K.
Mitsuishi
,
T.
Hara
,
K.
Kimoto
,
Y.
Irokawa
,
T.
Nabatame
,
S.
Takashima
,
K.
Ueno
,
M.
Edo
, and
Y.
Koide
,
Nanoscale Res. Lett.
13
,
403
(
2018
).
22.
T.
Nakamura
,
M.
Yoshino
,
H.
Tsuge
,
K.
Ikeda
, and
K.
Kuriyama
,
Surf. Coat. Technol.
355
,
7
(
2018
).
23.
A.
Uedono
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
,
H.
Matsuyama
,
W.
Egger
,
T.
Koschine
,
C.
Hugenschmidt
,
M.
Dickmann
,
K.
Kojima
,
S. F.
Chichibu
, and
S.
Ishibashi
,
Phys. Status Solidi B
255
,
1700521
(
2018
).
24.
K.
Kataoka
,
T.
Narita
,
H.
Iguchi
,
T.
Uesugi
, and
T.
Kachi
,
Phys. Status Solidi B
255
,
1700379
(
2018
).
25.
K.
Shima
,
H.
Iguchi
,
T.
Narita
,
K.
Kataoka
,
K.
Kojima
,
A.
Uedono
, and
S. F.
Chichibu
,
Appl. Phys. Lett.
113
,
191901
(
2018
).
26.
M.
Akazawa
,
R.
Kamoshida
,
S.
Murai
,
T.
Narita
,
M.
Omori
,
J.
Suda
, and
T.
Kachi
,
Phys. Status Solidi B
257
,
1900367
(
2019
).
27.
H.
Iguchi
,
T.
Narita
,
K.
Kataoka
,
M.
Kanechika
, and
A.
Uedono
,
J. Appl. Phys.
126
,
125102
(
2019
).
28.
R.
Tanaka
,
S.
Takashima
,
K.
Ueno
,
H.
Matsuyama
,
M.
Edo
, and
K.
Nakagawa
,
Appl. Phys. Express
12
,
054001
(
2019
).
29.
H.
Sakurai
,
M.
Omori
,
S.
Yamada
,
Y.
Furukawa
,
H.
Suzuki
,
T.
Narita
,
K.
Kataoka
,
M.
Horita
,
M.
Bockowski
,
J.
Suda
, and
T.
Kachi
,
Appl. Phys. Lett.
115
,
142104
(
2019
).
30.
W.
Götz
,
R. S.
Kern
,
C. H.
Chen
,
H.
Liu
,
D. A.
Steigerwald
, and
R. M.
Fletcher
,
Mater. Sci. Eng. B
59
,
211
(
1999
).
31.
P.
Kozodoy
,
H.
Xing
,
S. P.
DenBaars
,
U. K.
Mishra
,
A.
Saxler
,
R.
Perrin
,
S.
Elhamri
, and
W. C.
Mitchel
,
J. Appl. Phys.
87
,
1832
(
2000
).
32.
M.
Horita
,
S.
Takashima
,
R.
Tanaka
,
H.
Matsuyama
,
K.
Ueno
,
M.
Edo
,
T.
Takahashi
,
M.
Shimizu
, and
J.
Suda
,
Jpn. J. Appl. Phys.
56
,
031001
(
2017
).
33.
R. A.
Johnson
and
A. N.
Orlov
,
Physics of Radiation Effects in Crystals
(
North Holland
,
Amsterdam
,
1986
).
34.
J.
Karpiński
,
J.
Jun
, and
S.
Porowski
,
J. Cryst. Growth
66
,
1
(
1984
).
35.
J. C.
Zolper
and
R. J.
Shul
,
MRS Bull.
22
,
36
(
1997
).
36.
J. C.
Zolper
,
J. Cryst. Growth
178
,
157
(
1997
).
37.
J. A.
Van Vechten
,
Phys. Rev. B
7
,
1479
(
1973
).
38.
S.
Porowski
,
I.
Grzegory
,
D.
Kolesnikov
,
W.
Lojkowski
,
V.
Jager
,
W.
Jager
,
V.
Bogdanov
,
T.
Suski
, and
S.
Krukowski
,
J. Phys.: Condens. Matter
14
,
11097
(
2002
).
39.
P. B.
Hirsch
,
Electron Microscopy of Thin Crystals
(
Butterworths
,
London
,
1965
).
40.
S. J.
Pennycook
and
D. E.
Jesson
,
Ultramicroscopy
37
,
14
(
1991
).
41.
S. K.
Rhode
,
M. K.
Horton
,
M. J.
Kappers
,
S.
Zhang
,
C. J.
Humphreys
,
R. O.
Dusane
,
S.-L.
Sahonta
, and
M. A.
Moram
,
Phys. Rev. Lett.
111
,
025502
(
2013
).
42.
K.
Iwata
,
T.
Narita
,
M.
Nagao
,
K.
Tomita
,
K.
Kataoka
,
T.
Kachi
, and
N.
Ikarashi
,
Appl. Phys. Express
12
,
031004
(
2019
).
43.
44.
T.
Narita
,
N.
Ikarashi
,
K.
Tomita
,
K.
Kataoka
, and
T.
Kachi
,
J. Appl. Phys.
124
,
165706
(
2018
).
45.
J. E.
Northrup
,
Appl. Phys. Lett.
82
,
2278
(
2003
).
46.
Z.
Liliental-Weber
,
M.
Benamara
,
W.
Swider
,
J.
Washburn
,
I.
Grzegory
,
S.
Porowski
,
R. D.
Dupuis
, and
C. J.
Eiting
,
Phys. B
273-274
,
124
(
1999
).
47.
M.
Leroux
,
P.
Vennéguès
,
S.
Dalmasso
,
M.
Benaissa
,
E.
Feltin
,
P.
de Mierry
,
B.
Beaumont
,
B.
Damilano
,
N.
Grandjean
, and
P.
Gibart
,
Phys. Status Solidi A
192
,
394
400
(
2002
).
48.
S.
Limpijumnong
and
C. G.
Van de Walle
,
Phys. Rev. B
69
,
035207
(
2004
).
49.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
,
Phys. Rev. B
93
,
245201
(
2016
).
50.
O.
Ambacher
,
F.
Freudenberg
,
R.
Dimitrov
,
H.
Angerer
, and
M.
Stutzmann
,
Jpn. J. Appl. Phys.
37
,
2416
(
1998
).
51.
S. K.
Saarinen
,
T.
Suski
,
I.
Grzegory
, and
D. C.
Look
,
Phys. Rev. B
64
,
233201
(
2001
).
52.
S.
Hautakangas
,
J.
Oila
,
M.
Alatalo
,
K.
Saarinen
,
L.
Liszkay
,
D.
Seghier
, and
H. P.
Gislason
,
Phys. Rev. Lett.
90
,
137402
(
2003
).
53.
U.
Kaufmann
,
P.
Schlotter
,
H.
Obloh
,
K.
Köhler
, and
M.
Maier
,
Phys. Rev. B
62
,
10867
(
2000
).
54.
P.
Kozodoy
,
S.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
,
J. Cryst. Growth
195
,
265
(
1998
).
55.
C. G.
Van de Walle
,
C.
Stampfl
, and
J.
Neugebauer
,
J. Cryst. Growth
189–190
,
505
(
1998
).
You do not currently have access to this content.