Illuminating a water solution with a focused continuous wave laser produces a strong local heating of the liquid that leads to the nucleation of bubbles, also known as thermocavitation. During the growth of the bubble, the surrounding liquid is expelled from the constraining microfluidic channel through a nozzle, creating a jet. The characteristics of the resulting liquid jet were imaged using ultra-fast imaging techniques. Here, we provide a phenomenological description of the jet shapes and velocities and compare them with a boundary integral numerical model. We define the parameter regime, varying jet speed, taper geometry, and liquid volume for optimal printing, injection, and spray applications. These results are important for the design of energy-efficient needle-free jet injectors based on microfluidic thermocavitation.

1.
S. W.
Ohl
and
C. D.
Ohl
, “Acoustic cavitation in a microchannel,” in Handbook of Ultrasonics and Sonochemistry (Springer, Singapore, 2016), pp. 99–135.
2.
S.
Xiong
,
L. K.
Chin
,
K.
Ando
,
T.
Tandiono
,
A. Q.
Liu
, and
C. D.
Ohl
, “
Droplet generation via a single bubble transformation in a nanofluidic channel
,”
Lab Chip
15
(
6
),
1451
1457
(
2015
).
3.
B.
Shen
,
M.
Leman
,
M.
Reyssat
, and
P.
Tabeling
, “
Dynamics of a small number of droplets in microfluidic Hele-Shaw cells
,”
Exp. Fluids
55
(
5
),
1728
(
2014
).
4.
L.
Zhu
and
F.
Gallaire
, “
A pancake droplet translating in a Hele-Shaw cell: Lubrication film and flow field
,”
J. Fluid Mech.
798
,
955
969
(
2016
).
5.
E.
Brujan
,
Cavitation in Non-Newtonian Fluids
(
Springer-Verlag
,
Berlin
,
2011
), pp. XI, 269.
6.
Y.
Wang
,
M. E.
Zaytsev
,
G.
Lajoinie
,
H. L.
The
,
J. C. T.
Eijkel
,
A.
van den Berg
,
M.
Versluis
,
B. M.
Weckhuysen
,
X.
Zhang
,
H. J. W.
Zandvliet
, and
D.
Lohse
, “
Giant and explosive plasmonic bubbles by delayed nucleation
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
30
),
7676
7681
(
2018
).
7.
P.
Delrot
,
M. A.
Modestino
,
D.
Psaltis
, and
C.
Moser
, “
Laser-assisted inkjet printing of highly viscous fluids with sub-nozzle resolution
,”
Proc. SPIE
9738
,
973805
(
2016
).
8.
P.
Delrot
,
M. A.
Modestino
,
F.
Gallaire
,
D.
Psaltis
, and
C.
Moser
, “
Inkjet printing of viscous monodisperse microdroplets by laser-induced flow focusing
,”
Phys. Rev. Appl.
6
,
024003
(
2016
).
9.
S. R.
Gonzalez Avila
,
C.
Song
, and
C. D.
Ohl
, “
Fast transient microjets induced by hemispherical cavitation bubbles
,”
J. Fluid Mech.
767
,
31
51
(
2015
).
10.
Y.
Tagawa
,
A. E.
Oudalov
,
N.
Ghalbzouri
,
C.
Sun
, and
D.
Lohse
, “
Needle-free injection into skin and soft matter with highly focused microjets
,”
Lab Chip
13
,
1357
1363
(
2013
).
11.
C.
Berrospe-Rodríguez
,
C.
Visser
,
S.
Schlautmann
,
D.
Fernandez-Rivas
, and
R.
Ramos-García
, “
Toward jet injection by continuous-wave laser cavitation
,”
J. Biomed. Opt.
22
,
105003
(
2017
).
12.
J. P.
Padilla-Martinez
,
C.
Berrospe-Rodríguez
,
G.
Aguilar
,
J. C.
Ramirez-San-Juan
, and
R.
Ramos-García
, “
Optic cavitation with CW lasers: A review
,”
Phys. Fluids
26
(
12
),
122007
(
2014
).
13.
I. R.
Peters
,
Y.
Tagawa
,
N.
Oudalov
,
C.
Sun
,
A.
Prosperetti
,
D.
Lohse
, and
D.
van der Meer
, “
Highly focused supersonic microjets: Numerical simulations
,”
J. Fluid Mech.
719
,
587
605
(
2013
).
14.
S. F.
Rastopov
and
A. T.
Sukhodolsky
, “
Sound generation by thermocavitation-induced CW laser in solutions
,”
Proc. SPIE
1440
,
127
135
(
1991
).
15.
L. A.
Coldren
,
S. W.
Corzine
, and
M. L.
Mashanovitch
,
Diode Lasers and Photonic Integrated Circuits
(
John Wiley & Sons
,
2012
), Vol. 218.
16.
A.
Pietrzak
,
R.
Hülsewede
,
M.
Zorn
,
O.
Hirsekorn
,
J.
Sebastian
,
J.
Meusel
,
P.
Hennig
,
P.
Crump
,
H.
Wenzel
,
S.
Knigge
et al., “Progress in efficiency-optimized high-power diode lasers,” in Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems (International Society for Optics and Photonics, 2013), Vol. 8898, p. 889807.
17.
C.
Sun
,
E.
Can
,
R.
Dijkink
,
D.
Lohse
, and
A.
Prosperetti
, “
Growth and collapse of a vapour bubble in a microtube: The role of thermal effects
,”
J. Fluid Mech.
632
,
5
16
(
2009
).
18.
Q.
Zeng
,
S. R.
Gonzalez-Avila
,
R.
Dijkink
,
P.
Koukouvinis
,
M.
Gavaises
, and
C.-D.
Ohl
, “
Wall shear stress from jetting cavitation bubbles
,”
J. Fluid Mech.
846
,
341
355
(
2018
).
19.
E.-A.
Brujan
,
T.
Noda
,
A.
Ishigami
,
T.
Ogasawara
, and
H.
Takahira
, “
Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls
,”
J. Fluid Mech.
841
,
28
49
(
2018
).
20.
S.
Hoath
,
Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets
(
Computational Mechanics Publications
,
2016
).
21.
A.
Tirella
,
F.
Vozzi
,
C. D.
Maria
,
G.
Vozzi
,
T.
Sandri
,
D.
Sassano
,
L.
Cognolato
, and
A.
Ahluwalia
, “
Substrate stiffness influences high resolution printing of living cells with an ink-jet system
,”
J. Biosci. Bioeng.
112
(
1
),
79
85
(
2011
).
22.
G.
Hu
,
J.
Kang
,
L. W.
Ng
,
X.
Zhu
,
R. C.
Howe
,
C. G.
Jones
,
M. C.
Hersam
, and
T.
Hasan
, “
Functional inks and printing of two-dimensional materials
,”
Chem. Soc. Rev.
47
(
9
),
3265
3300
(
2018
).
23.
M. R.
Prausnitz
,
S.
Mitragotri
, and
R.
Langer
, “
Current status and future potential of transdermal drug delivery
,”
Nat. Rev. Drug Discovery
3
(
2
),
115
124
(
2004
).
24.
B.
Verhaagen
and
D.
Fernandez Rivas
, “
Measuring cavitation and its cleaning effect
,”
Ultrason. Sonochem.
29
,
619
628
(
2016
).
25.
S.
Mitragotri
,
P. A.
Burke
, and
R.
Langer
, “
Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies
,”
Nat. Rev. Drug Discovery
13
(
9
),
655
672
(
2014
).
26.
L.
Oyarte Gálvez
,
M.
Brió Pérez
, and
D.
Fernández Rivas
, “
High speed imaging of solid needle and liquid micro-jet injections
,”
J. Appl. Phys.
125
(
14
),
144504
(
2019
).
27.
K.
Cu
,
R.
Bansal
,
S.
Mitragotri
, and
D. F.
Rivas
, “
Delivery strategies for skin: Comparison of nanoliter jets, needles and topical solutions
,”
Ann. Biomed. Eng.
1
12
(
2019
).
28.
H. P.
Le
, “
Progress and trends in ink-jet printing technology
,”
J. Imaging Sci. Technol.
42
(
1
),
49
62
(
1998
).
29.
J.-U.
Park
,
M.
Hardy
,
S. J.
Kang
,
K.
Barton
,
K.
Adair
,
D.
Kishore Mukhopadhyay
,
C. Y.
Lee
,
M. S.
Strano
,
A. G.
Alleyne
,
J. G.
Georgiadis
,
P. M.
Ferreira
, and
J. A.
Rogers
, “
High-resolution electrohydrodynamic jet printing
,”
Nat. Mater.
6
,
782
(
2007
).
30.
H.
Dong
,
W. W.
Carr
, and
J. F.
Morris
, “
Visualization of drop-on-demand inkjet: Drop formation and deposition
,”
Rev. Sci. Instrum.
77
(
8
),
085101
(
2006
).
31.
G. H.
McKinley
and
M.
Renardy
, “
Wolfgang von ohnesorge
,”
Phys. Fluids
23
(
12
),
127101
(
2011
).
32.
C.
McIlroy
,
O.
Harlen
, and
N.
Morrison
, “
Modelling the jetting of dilute polymer solutions in drop-on-demand inkjet printing
,”
J. Nonnewton. Fluid Mech.
201
,
17
28
(
2013
).
33.
B.
Derby
, “
Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution
,”
Annu. Rev. Mater. Res.
40
(
1
),
395
414
(
2010
).
34.
C.
Berrospe-Rodríguez
,
C.
Visser
,
D.
Schlautmann
,
S.
Ramos-García
, and
R.
Fernandez-Rivas
, “
Continuous-wave laser generated jets for needle free applications
,”
Biomicrofluidics
10
(
1
),
014104
(
2016
).
35.
E.
Zwaan
,
S.
Le Gac
,
K.
Tsuji
, and
C. D.
Ohl
, “
Controlled cavitation in microfluidic systems
,”
Phys. Rev. Lett.
98
,
254501
(
2007
).
36.
C.
McIlroy
,
O.
Harlen
, and
N.
Morrison
, “
Modelling the jetting of dilute polymer solutions in drop-on-demand inkjet printing
,”
J. Nonnewton. Fluid Mech.
201
,
17
28
(
2013
).
37.
A. M.
Ardekani
,
V.
Sharma
, and
G. H.
McKinley
, “
Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets
,”
J. Fluid Mech.
665
,
46
56
(
2010
).
38.
H.
Onuki
,
Y.
Oi
, and
Y.
Tagawa
, “
Microjet generator for highly viscous fluids
,”
Phys. Rev. Appl.
9
,
014035
(
2018
).
39.
M.-C.
Yuen
, “
Non-linear capillary instability of a liquid jet
,”
J. Fluid Mech.
33
(
1
),
151
163
(
1968
).
40.
A. H.
Nayfeh
, “
Nonlinear stability of a liquid jet
,”
Phys. Fluids
13
(
4
),
841
847
(
1970
).
41.
P.
Rohilla
,
Y. S.
Rane
,
I.
Lawal
,
A.
Le Blanc
,
J.
Davis
,
J. B.
Thomas
,
C.
Weeks
,
W.
Tran
,
P.
Fisher
,
K. E.
Broderick
et al., “
Characterization of jets for impulsively-started needle-free jet injectors: Influence of fluid properties
,”
J. Drug Deliv. Sci. Technol.
53
,
101167
(
2019
).
42.
Y.
Tagawa
,
N.
Oudalov
,
C. W.
Visser
,
I. R.
Peters
,
D.
van der Meer
,
C.
Sun
,
A.
Prosperetti
, and
D.
Lohse
, “
Highly focused supersonic microjets
,”
Phys. Rev. X
2
,
031002
(
2012
).
43.
W. J.
Grande
, “
Direct capillary printing in medical device manufacture
,” in
Medical Coatings and Deposition Technologies
, edited by
D. A.
Glocker
and
S. V.
Ranade
(
Scrivener
,
2016
), pp.
309
372
.
44.
L.
Shang
,
Y.
Cheng
, and
Y.
Zhao
, “
Emerging droplet microfluidics
,”
Chem. Rev.
117
,
7964
8040
(
2017
).
45.
E.
Dressaire
and
A.
Sauret
, “
Clogging of microfluidic systems
,”
Soft Matter
13
(
1
),
37
48
(
2017
).
46.
M.
Gielen
, “
Splashing drops
,” Ph.D. thesis (University of Twente, April 2018).
47.
J.
Schramm-Baxter
and
S.
Mitragotri
, “
Needle-free jet injections: Dependence of jet penetration and dispersion in the skin on jet power
,”
J. Control. Release
97
(
3
),
527
535
(
2004
).
48.
J.
Schramm
and
S.
Mitragotri
, “
Transdermal drug delivery by jet injectors: Energetics of jet formation and penetration
,”
Pharm. Res.
19
(
11
),
1673
1679
(
2002
).
49.
A.
Arora
,
M. R.
Prausnitz
, and
S.
Mitragotri
, “
Micro-scale devices for transdermal drug delivery
,”
Int. J. Pharm.
364
(
2
),
227
236
(
2008
).
50.
J. W.
Mckeage
,
B. P.
Ruddy
,
P. M.
Nielsen
, and
A. J.
Taberner
, “
The effect of jet speed on large volume jet injection
,”
J. Control. Release
280
,
51
57
(
2018
).
51.
B.
Ambravaneswaran
,
S. D.
Phillips
, and
O. A.
Basaran
, “
Theoretical analysis of a dripping faucet
,”
Phys. Rev. Lett.
85
,
5332
5335
(
2000
).
52.
A.
Kalaaji
,
B.
Lopez
,
P.
Attané
, and
A.
Soucemarianadin
, “
Breakup length of forced liquid jets
,”
Phys. Fluids
15
(
9
),
2469
2479
(
2003
).
53.
H.
González
and
F. J.
García
, “
The measurement of growth rates in capillary jets
,”
J. Fluid Mech.
619
,
179
212
(
2009
).
54.
V.
Fainerman
,
A.
Makievski
, and
R.
Miller
, “
The measurement of dynamic surface tensions of highly viscous liquids by the maximum bubble pressure method
,”
Colloids Surf. A Physicochem. Eng. Asp.
75
,
229
235
(
1993
).
55.
W.
van Hoeve
,
S.
Gekle
,
J. H.
Snoeijer
,
M.
Versluis
,
M. P.
Brenner
, and
D.
Lohse
, “
Breakup of diminutive Rayleigh jets
,”
Phys. Fluids
22
(
12
),
122003
(
2010
).
56.
Y. S.
Oh
,
D. Y.
Choi
,
J. Y.
Son
,
B. Y.
Kim
,
H. W.
Kang
,
C. B.
Chang
,
J.-T.
Moon
, and
H. J.
Sung
, “
Breakup behavior of a molten metal jet
,”
Int. J. Heat Fluid Flow
50
,
27
37
(
2014
).
57.
M.
Etzold
,
A.
Deswal
,
L.
Chen
, and
F.
Durst
, “
Break-up length of liquid jets produced by short nozzles
,”
Int. J. Multiphase Flow
99
,
397
407
(
2018
).
58.
N.
Reis
and
B.
Derby
, “
Ink jet deposition of ceramic suspensions: Modeling and experiments of droplet formation
,”
MRS Proc.
625
,
117
(
2000
).
59.
S. P.
Lin
and
R. D.
Reitz
, “
Drop and spray formation from a liquid jet
,”
Annu. Rev. Fluid Mech.
30
(
1
),
85
105
(
1998
).
60.
A.
Lefebvre
, Atomization and Sprays, Combustion (Hemisphere Publishing Corporation) (Taylor and Francis, 1988).
61.
P.
Rohilla
and
J. O.
Marston
, “
In-vitro studies of jet injections
,”
Int. J. Pharm.
568
,
118503
(
2019
).
62.
J.
Hun-wei Lee
and
V.
Chu
,
Turbulent Jets and Plumes
(
Springer US
,
2003
).
63.
M.
Moradiafrapoli
and
J.
Marston
, “
High-speed video investigation of jet dynamics from narrow orifices for needle-free injection
,”
Chem. Eng. Res. Design
117
,
110
121
(
2017
).
64.
E.
Ory
,
H.
Yuan
,
A.
Properetti
,
S.
Popinet
, and
S.
Zaleski
, “
Growth and collapse of a vapor bubble in a narrow tube
,”
Phys. Fluids
12
(
6
),
1268
1277
(
2000
).
65.
H. N.
Oguz
and
A.
Prosperetti
, “
Dynamics of bubble growth and detachment from a needle
,”
J. Fluid Mech.
257
,
111
145
(
1993
).
66.
H.
Power
and
L. C.
Wrobel
,
Boundary Integral Methods in Fluid Mechanics
(
Computational Mechanics Publications
,
1995
).
67.
R.
Bergman
,
D.
van der Meer
,
S.
Gekle
,
A.
van der Bos
, and
D.
Lohse
, “
Controlled impact of a disk on a water surface: Cavity dynamics
,”
J. Fluid Mech.
633
,
381
409
(
2009
).
68.
S.
Geckle
,
J. M.
Gordillo
,
D.
van der Meer
, and
D.
Lohse
, “
High-speed jet formation after solid object impact
,”
Phys. Rev. Lett.
102
,
034502
(
2009
).
69.
H.
Yuan
,
H.
Oguz
, and
A.
Prosperetti
, “
Growth and collapse of a vapor bubble in a small tube
,”
Int. J. Heat Mass Transf.
42
,
3643
3657
(
1999
).
70.
H.
Yuan
and
A.
Prosperetti
, “
The pumping effect of growing and collapsing bubbles in a tube
,”
J. Micromech. Microeng.
9
,
402
413
(
1999
).
71.
S.
Popinet
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
(
2
),
572
600
(
2003
).
72.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
(
16
),
5838
5866
(
2009
).
73.
S.
Popinet
, “
Numerical models of surface tension
,”
Annu. Rev. Fluid Mech.
50
,
49
75
(
2018
).
You do not currently have access to this content.