Based on density functional theory, we have investigated the effects of in-plane biaxial strain on the electronic and magnetic properties of the two-dimensional GaN (2D GaN) with Ga- (VGa) or N-vacancy (VN). We considered two different levels of vacancy concentration, i.e., θ=1/62 and θ=1/34. While the pristine GaN 2D structures are intrinsically semiconducting, the 2D GaN with VGa defects under tensile/compressive biaxial strains is metallic, except at a high compressive strain of 6%. In addition, the 2D GaN exhibits a strain-tunable magnetic property by introducing the VGa defects, where the magnetic moment can be modulated by applying a biaxial strain on the material. A compressive strain larger than 2% tends to suppress the magnetic effect. A drastic reduction of the total magnetization from 2.21 μB to 0.16 μB is clearly visible for a lower VGa concentration of θ=1/62. On the other hand, the 2D GaN with VN defects is nonmagnetic, and this behavior is not affected by the biaxial strain.

1.
S.
Nakamura
, “
Nobel lecture: Background story of the invention of efficient blue InGaN light emitting diodes
,”
Rev. Mod. Phys.
87
,
1139
(
2015
).
2.
A. K.
Singh
and
R. G.
Hennig
, “
Computational synthesis of single-layer GaN on refractory materials
,”
Appl. Phys. Lett.
105
,
051604
(
2014
).
3.
Z.
Qin
,
G.
Qin
,
X.
Zuo
,
Z.
Xiong
, and
M.
Hu
, “
Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: A comparative study
,”
Nanoscale
9
,
4295
(
2017
).
4.
H.
Lu
,
Y.
Guo
, and
J.
Robertson
, “
Chemical trends of Schottky barrier behavior on monolayer hexagonal B, Al, and Ga nitrides
,”
J. Appl. Phys.
120
,
065302
(
2016
).
5.
Y.
Mu
, “
Chemical functionalization of GaN monolayer by adatom
,”
J. Phys. Chem. C
119
,
20911
(
2015
).
6.
W.
Tang
,
M.
Sun
,
J.
Yu
, and
J.-P.
Chou
, “
Magnetism in non-metal atoms adsorbed graphene-like gallium nitride monolayers
,”
Appl. Surf. Sci.
427
,
609
(
2018
).
7.
K. H.
Yeoh
,
T. L.
Yoon
,
T. L.
Lim
,
Rusi
, and
D. S.
Ong
, “
Monolayer GaN functionalized with alkali metal and alkaline earth metal atoms A first-principles study
,”
Superlattices Microstruct.
130
,
428
(
2019
).
8.
Z.
Cui
,
X.
Wang
,
E.
Li
,
Y.
Ding
,
C.
Sun
, and
M.
Sun
, “
Alkali-metal-adsorbed g-GaN monolayer: Ultra-low work functions and optical properties
,”
Nanoscale Res. Lett.
13
,
207
(
2018
).
9.
Y.
Jiang
,
S.
Cai
,
Y.
Tao
,
Z.
Wei
,
K.
Bi
, and
Y.
Chen
, “
Phonon transport properties of bulk and monolayer GaN from first-principles calculations
,”
Comput. Mater. Sci.
138
,
419
(
2017
).
10.
N.
Alaal
and
I. S.
Roqan
, “
Tuning the electronic properties of hexagonal two-dimensional GaN monolayers via doping for enhanced optoelectronic applications
,”
ACS Appl. Nano Mater.
2
,
202
(
2019
).
11.
Q.
Chen
,
H.
Hu
,
X.
Chen
, and
J.
Wang
, “
Tailoring band gap in GaN sheet by chemical modification and electric field: Ab initio calculations
,”
Appl. Phys. Lett.
98
,
053102
(
2011
).
12.
Q.
Peng
,
C.
Liang
,
W.
Ji
, and
S.
De
, “
Mechanical properties of g-GaN: A first principles study
,”
Appl. Phys. A
113
,
483
(
2013
).
13.
J.
Zhang
, “
Piezoelectric effect on the thermal conductivity of monolayer gallium nitride
,”
J. Appl. Phys.
123
,
035102
(
2018
).
14.
D.
Xu
,
H.
He
,
R.
Pandey
, and
S. P.
Karna
, “
Stacking and electric field effects in atomically thin layers of GaN
,”
J. Phys. Condens. Matter
25
,
345302
(
2013
).
15.
R.
Sun
,
G.
Yang
,
F.
Wang
,
G.
Chu
,
N.
Lu
, and
X.
Shen
, “
A theoretical study on the metal contacts of monolayer gallium nitride (GaN)
,”
Mater. Sci. Semicond. Process.
84
,
64
(
2018
).
16.
Z. Y.
Al Balushi
,
K.
Wang
,
R. K.
Ghosh
,
R. A.
Vilá
,
S. M.
Eichfeld
,
J. D.
Caldwell
,
X.
Qin
,
Y.-C.
Lin
,
P. A.
DeSario
,
G.
Stone
,
S.
Subramanian
,
D. F.
Paul
,
R. M.
Wallace
,
S.
Datta
,
J. M.
Redwing
, and
J. A.
Robinson
, “
Two-dimensional gallium nitride realized via graphene encapsulation
,”
Nat. Mater.
15
,
1166
(
2016
).
17.
X.
Zhang
,
L.
Jin
,
X.
Dai
,
G.
Chen
, and
G.
Liu
, “
Two-dimensional GaN: An excellent electrode material providing fast Ion diffusion and high storage capacity for Li-ion and Na-ion batteries
,”
ACS Appl. Mater. Interfaces.
10
,
38978
(
2018
).
18.
N.
Sanders
,
D.
Bayerl
,
G.
Shi
,
A. K.
Mengle
, and
E.
Kioupakis
, “
Electronic and optical properties of two-dimensional GaN from first principles
,”
Nano Lett.
17
,
7345
(
2017
).
19.
L.
Tong
,
J.
He
,
M.
Yang
,
Z.
Chen
,
J.
Zhang
,
Y.
Lu
, and
Z.
Zhao
, “
Anisotropic carrier mobility in buckled two-dimensional GaN
,”
Phys. Chem. Chem. Phys.
19
,
23492
(
2017
).
20.
M. M.
Ugeda
,
I.
Brihuega
,
F.
Guinea
, and
J. M.
Gómez-Rodríguez
, “
Missing atom as a source of carbon magnetism
,”
Phys. Rev. Lett.
104
,
096804
(
2010
).
21.
H.
Wang
,
Q.
Wang
,
Y.
Cheng
,
K.
Li
,
Y.
Yao
,
Q.
Zhang
,
C.
Dong
,
P.
Wang
,
U.
Schwingenschlögl
,
W.
Yang
, and
X. X.
Zhang
, “
Doping monolayer graphene with single atom substitutions
,”
Nano Lett.
12
,
141
(
2012
).
22.
H.
Ullah
,
M.
Noor-A-Alam
, and
Y.-H.
Shin
, “
Influences of vacancy and doping on electronic and magnetic properties of monolayer SnS
,”
J. Appl. Phys.
124
,
065102
(
2018
).
23.
R.
González
,
W.
López-Pérez
,
Á
González-García
,
M. G.
Moreno-Armenta
, and
R.
González-Hernández
, “
Vacancy charged defects in two-dimensional GaN
,”
Appl. Surf. Sci.
433
,
1049
1055
(
2018
).
24.
Q.
Zhao
,
Z.
Xiong
,
Z.
Qin
,
L.
Chen
,
N.
Wu
, and
X.
Li
, “
Tuning magnetism of monolayer GaN by vacancy and nonmagnetic chemical doping
,”
J. Phys. Chem. Solids
91
,
1
(
2016
).
25.
Y.
Kadioglu
,
F.
Ersan
,
D.
Kecik
,
Aktürk
,
E.
Aktürk
, and
S.
Ciraci
, “
Chemical and substitutional doping, and anti-site and vacancy formation in monolayer AlN and GaN
,”
Phys. Chem. Chem. Phys.
20
,
16077
(
2018
).
26.
W. S.
Yun
and
J. D.
Lee
, “
Strain-induced magnetism in single-layer MoS2: Origin and manipulation
,”
J. Phys. Chem. C
119
,
2822
(
2015
).
27.
P.
Tao
,
H.
Guo
,
T.
Yang
, and
Z.
Zhang
, “
Strain-induced magnetism in MoS2 monolayer with defects
,”
J. Appl. Phys.
115
,
054305
(
2014
).
28.
S.
Chintalapati
,
L.
Shen
,
Q.
Xiong
, and
Y. P.
Feng
, “
Magnetism in phosphorene: Interplay between vacancy and strain
,”
Appl. Phys. Lett.
107
,
072401
(
2015
).
29.
X.
Fan
,
Y.
Li
,
L.
Su
,
K.
Ma
,
J.
Li
, and
H.
Zhang
, “
Theoretical prediction of tunable electronic and magnetic properties of monolayer antimonene by vacancy and strain
,”
Appl. Surf. Sci.
488
,
98
(
2019
).
30.
P.
Giannozzi
 et al., “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys. Condens. Matter
21
,
395502
(
2009
).
31.
P.
Giannozzi
 et al., “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys. Condens. Matter
29
,
465901
(
2017
).
32.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
33.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
(
2006
).
34.
C. G.
Van de Walle
and
J.
Neugebauer
, “
First-principles calculations for defects and impurities: Applications to III-nitrides
,”
J. Appl. Phys.
95
,
3851
(
2004
).
35.
C.
Freysoldt
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
,
G.
Kresse
,
A.
Janotti
, and
C. G.
Van de Walle
, “
First-principles calculations for point defects in solids
,”
Rev. Mod. Phys.
86
,
253
(
2014
).
36.
Y.
Huang
,
C.
Wang
,
X.
Chen
,
D.
Zhou
,
J.
Du
,
S.
Wang
, and
L.
Ning
, “
First-principles study on intrinsic defects of SnSe
,”
RSC Adv.
7
,
27612
(
2017
).
37.
G.
Wang
,
R.
Pandey
, and
S. P.
Karna
, “
Atomically thin group V elemental films: Theoretical investigations of antimonene allotropes
,”
ACS Appl. Mater. Interfaces
7
,
11490
(
2015
).
38.
Z.-Q.
Wang
,
T.-Y.
,
H.-Q.
Wang
,
Y.-P.
Feng
, and
J.-C.
Zheng
, “
Band gap opening in 8-pmmn borophene by hydrogenation
,”
ACS Appl. Electron. Mater.
1
,
667
(
2019
).
39.
S.
Na-Phattalung
,
M. F.
Smith
,
K.
Kim
,
M.-H.
Du
, and
S.-H.
Wei
, “
First-principles study of native defects in anatase TiO2
,”
Phys. Rev. B
73
,
125205
(
2006
).

Supplementary Material

You do not currently have access to this content.