The theory of phononic friction attributes that the multiphonon processes are the main cause of the mechanical energy dissipation in a wear-free friction process. Unfortunately, it is still impossible to set up a direct relationship between the phonons and the frictional force. In this study, a classical molecular dynamics simulation model is used to mimic a piece of graphene sliding over a supported graphene substrate. It is found that the lifetime of some phonons, especially the modes around the Γ point of the first Brillouin zone, gradually decreases with the increase of the sliding velocity. A phonon lifetime-based model is proposed to explain the variation of the frictional force as a function of the sliding velocity, i.e., the shorter phonon lifetime corresponding to a higher friction force under the same temperature. This model is consistent with the traditional Prandtl-Tomlinson model at a low sliding velocity range, which predicts that the friction force increases logarithmically with the sliding velocity. Once the sliding velocity exceeds a critical value, the lifetime of the excited phonons is far longer than the time for the tip sweeping a lattice constant. In this case, the excited phonons do not have enough time to dissipate the mechanical energy, which leads to the reduced friction force with the increase of the sliding velocity.

1.
J. M.
Martin
,
C.
Donnet
,
Th.
Lemogne
, and
Th.
Epicier
, “
Superlubricity of molybdenum disulfide
,”
Phys. Rev. B
48
,
10583
10586
(
1993
).
2.
J.
Gobet
,
P.-N.
Volpe
, and
M.-A.
Dubois
, “
Friction coefficient of diamond under conditions compatible with microelectromechanical systems applications
,”
Appl. Phys. Lett.
108
,
124103
(
2016
).
3.
V.
Bormuth
,
V.
Varga
,
J.
Howard
, and
E.
Schaeffer
, “
Protein friction limits diffusive and directed movements of Kinesin motors on microtubules
,”
Science
325
,
870
873
(
2009
).
4.
K.
Holmberg
,
P.
Andersson
, and
A.
Erdemir
, “
Global energy consumption due to friction in passenger cars
,”
Tribol. Int.
47
,
221
234
(
2012
).
5.
J.
Chen
,
I.
Ratera
,
J. Y.
Park
, and
M.
Salmeron
, “
Velocity dependence of friction and hydrogen bonding effects
,”
Phys. Rev. Lett.
96
,
236102
(
2006
).
6.
E.
Gnecco
,
R.
Bennewitz
,
T.
Gyalog
,
Ch.
Loppacher
,
M.
Bammerlin
,
E.
Meyer
, and
H.-J.
Guntherodt
, “
Velocity dependence of atomic friction
,”
Phys. Rev. Lett.
84
,
1172
1175
(
2000
).
7.
P.
Reimann
and
M.
Evstigneev
, “
Nonmonotonic velocity dependence of atomic friction
,”
Phys. Rev. Lett.
93
,
230802
(
2004
).
8.
M. A.
Lantz
,
S. J.
Oshea
,
M. E.
Welland
, and
K. L.
Johnson
, “
Atomic-force-microscope study of contact area and friction on NbSe2
,”
Phys. Rev. B
55
,
10776
10785
(
1997
).
9.
D.
Dietzel
,
C.
Ritter
,
T.
Moenninghoff
,
H.
Fuchs
,
A.
Schirmeisen
, and
U. D.
Schwarz
, “
Frictional duality observed during nanoparticle sliding
,”
Phys. Rev. Lett.
101
,
125505
(
2008
).
10.
Y.
Mo
,
K. T.
Turner
, and
I.
Szlufarska
, “
Friction laws at the nanoscale
,”
Nature
457
,
1116
1119
(
2009
).
11.
D.
Mandelli
,
W.
Ouyang
,
O.
Hod
, and
M.
Urbakh
, “
Negative friction coefficients in superlubric graphite-hexagonal boron nitride heterojunctions
,”
Phys. Rev. Lett.
122
,
076102
(
2019
).
12.
Z.
Deng
,
A.
Smolyanitsky
,
Q.
Li
,
X.-Q.
Feng
, and
R. J.
Cannara
, “
Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale
,”
Nat. Mater.
11
,
1032
1037
(
2012
).
13.
M.
Dienwiebel
,
G. S.
Verhoeven
,
N.
Pradeep
,
J. W. M.
Frenken
,
J. A.
Heimberg
, and
H. W.
Zandbergen
, “
Superlubricity of graphite
,”
Phys. Rev. Lett.
92
,
126101
(
2004
).
14.
D.
Berman
,
S. A.
Deshmukh
,
S. K. R. S.
Sankaranarayanan
,
A.
Erdemir
, and
A. V.
Sumant
, “
Macroscale superlubricity enabled by graphene nanoscroll formation
,”
Science
348
,
1118
1122
(
2015
).
15.
J.
Krim
, “
Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films
,”
Adv. Phys.
61
,
155
323
(
2012
).
16.
B. N. J.
Persson
and
R.
Ryberg
, “
Brownian-motion and vibrational phase relaxation at surfaces-Co on Ni(111)
,”
Phys. Rev. B
32
,
3586
3596
(
1985
).
17.
R.
Pawlak
 et al., “
Single-molecule tribology: Force microscopy manipulation of a porphyrin derivative on a copper surface
,”
ACS Nano
10
,
713
722
(
2016
).
18.
P. E.
Sheehan
and
C. M.
Lieber
, “
Friction between van der Waals solids during lattice directed sliding
,”
Nano Lett.
17
,
4116
4121
(
2017
).
19.
A. D.
Craciun
,
J. L.
Gallani
, and
M. V.
Rastei
, “
Stochastic stick-slip nanoscale friction on oxide surfaces
,”
Nanotechnology
27
,
055402
(
2016
).
20.
A.
Benassi
,
A.
Vanossi
,
G. E.
Santoro
, and
E.
Tosatti
, “
Parameter-free dissipation in simulated sliding friction
,”
Phys. Rev. B
82
,
081401
(
2010
).
21.
Z.-J.
Wang
,
T.-B.
Ma
,
Y.-Z.
Hu
,
L.
Xu
, and
H.
Wang
, “
Energy dissipation of atomic-scale friction based on one-dimensional Prandtl-Tomlinson model
,”
Friction
3
,
170
182
(
2015
).
22.
J. N.
Israelachvili
,
Intermolecular and Surface Force
(
Academic Press
,
2011
).
23.
B. N. J.
Persson
,
Sliding Friction Physical Principles and Applications
(
Springer
,
Berlin
,
2000
).
24.
E.
Gnecco
and
E.
Meyer
,
Elements of Friction Theory and Nanotribology
(
Cambridge University Press
,
2015
).
25.
J. N.
Glosli
and
G. M.
McClelland
, “
Molecular dynamics study of sliding friction of ordered organic monolayers
,”
Phys. Rev. Lett.
70
,
1960
1963
(
1993
).
26.
S.
Kwon
,
J.-H.
Ko
,
K.-J.
Jeon
,
Y.-H.
Kim
, and
J. Y.
Park
, “
Enhanced nanoscale friction on fluorinated graphene
,”
Nano Lett.
12
,
6043
6048
(
2012
).
27.
M. V. D.
Prasad
and
B.
Bhattacharya
, “
Phononic origins of friction in carbon nanotube oscillators
,”
Nano Lett.
17
,
2131
2137
(
2017
).
28.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
, “
Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation
,”
Appl. Phys. Lett.
80
,
2484
2486
(
2002
).
29.
Z.
Wei
,
Y.
Chen
, and
C.
Dames
, “
Wave packet simulations of phonon boundary scattering at graphene edges
,”
J. Appl. Phys.
112
,
024328
(
2012
).
30.
L.
Lindsay
and
D. A.
Broido
, “
Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
,”
Phys. Rev. B
81
,
205441
(
2010
).
31.
S. M.
Foiles
,
M. I.
Baskes
, and
M. S.
Daw
, “
Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys
,”
Phys. Rev. B
33
,
7983
7991
(
1986
).
32.
Z.
Wei
,
J.
Yang
,
W.
Chen
,
K.
Bi
,
D.
Li
, and
Y.
Chen
, “
Phonon mean free path of graphite along the c-axis
,”
Appl. Phys. Lett.
104
,
081903
(
2014
).
33.
H.
Huang
,
X.
Tang
,
F.
Chen
,
Y.
Yang
,
J.
Liu
,
H.
Li
, and
D.
Chen
, “
Radiation damage resistance and interface stability of copper-graphene nanolayered composite
,”
J. Nucl. Mater.
460
,
16
22
(
2015
).
34.
W.
Wang
,
Q.
Peng
,
Y.
Dai
,
Z.
Qian
, and
S.
Liu
, “
Distinctive nanofriction of graphene coated copper foil
,”
Comput. Mater. Sci.
117
,
406
411
(
2016
).
35.
Z.
Wei
,
Y.
Kan
,
Y.
Zhang
, and
Y.
Chen
, “
The frictional energy dissipation and interfacial heat conduction in the sliding interface
,”
AIP Adv.
8
,
115321
(
2018
).
36.
J. B.
Sokoloff
, “
Possible nearly frictionless sliding for mesoscopic solids
,”
Phys. Rev. Lett.
71
,
3450
3453
(
1993
).
37.
B.
Qiu
and
X.
Ruan
, “
Reduction of spectral phonon relaxation times from suspended to supported graphene
,”
Appl. Phys. Lett.
100
,
193101
(
2012
).
38.
J.
Chen
,
G.
Zhang
, and
B.
Li
, “
Substrate coupling suppresses size dependence of thermal conductivity in supported graphene
,”
Nanoscale
5
,
532
536
(
2013
).
39.
Z.
Wei
,
J.
Yang
,
K.
Bi
, and
Y.
Chen
, “
Mode dependent lattice thermal conductivity of single layer graphene
,”
J. Appl. Phys.
116
,
153503
(
2014
).
40.
J. A.
Thomas
,
J. E.
Turney
,
R. M.
Iutzi
,
C. H.
Amon
, and
A. J. H.
McGaughey
, “
Predicting phonon dispersion relations and lifetimes from the spectral energy density
,”
Phys. Rev. B
81
,
081411
(
2010
).
41.
J. H.
Seol
 et al., “
Two-dimensional phonon transport in supported graphene
,”
Science
328
,
213
216
(
2010
).
42.
L.
Lindsay
,
D. A.
Broido
, and
N.
Mingo
, “
Flexural phonons and thermal transport in multilayer graphene and graphite
,”
Phys. Rev. B
83
,
235428
(
2011
).
43.
B. F.
Donovan
,
E.
Sachet
,
J.-P.
Maria
, and
P. E.
Hopkins
, “
Interplay between mass-impurity and vacancy phonon scattering effects on the thermal conductivity of doped cadmium oxide
,”
Appl. Phys. Lett.
108
,
021901
(
2016
).
44.
N. K.
Ravichandran
and
D.
Broido
, “
Non-monotonic pressure dependence of the thermal conductivity of boron arsenide
,”
Nat. Commun.
10
,
827
(
2019
).
45.
A. S.
Henry
and
G.
Chen
, “
Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics
,”
J. Comput. Theor. Nanosci.
5
,
141
152
(
2008
).
46.
J. M.
Ziman
,
Electrons and Phonons
(
Oxford University Press
,
London
,
1960
).
47.
Y.
Chen
,
J.
Yang
,
X.
Wang
,
Z.
Ni
, and
D.
Li
, “
Temperature dependence of frictional force in carbon nanotube oscillators
,”
Nanotechnology
20
,
035704
(
2009
).
48.
J. Y.
Park
and
M.
Salmeron
, “
Fundamental aspects of energy dissipation in friction
,”
Chem. Rev.
114
,
677
711
(
2014
).
49.
S. Y.
Krylov
,
K. B.
Jinesh
,
H.
Valk
,
M.
Dienwiebel
, and
J. W. M.
Frenken
, “
Thermally induced suppression of friction at the atomic scale
,”
Phys. Rev. E
71
,
065101
(
2005
).
50.
D.
Gangloff
,
A.
Bylinskii
,
I.
Counts
,
W.
Jhe
, and
V.
Vuletic
, “
Velocity tuning of friction with two trapped atoms
,”
Nat. Phys.
11
,
915
919
(
2015
).
You do not currently have access to this content.