Acoustically driven antennas operating at resonant wavelengths up to 105 times smaller than electrical antennas offer great potential for portable, low power communication systems in the very low frequency and low frequency range. Acoustic antennas with real resonant impedances have been demonstrated to offer orders of magnitude better total efficiency compared to similar sized, subwavelength electrically small antennas exhibiting large reactances. While most acoustic antennas share favorable impedance characteristics offering significant matching efficiency advantages over electrically small antennas, radiation efficiency varies greatly based on the implementation of the acoustically driven antenna. This paper presents a theoretical analysis of the three primary methods for implementing acoustically driven radiating elements, investigating both radiation and matching efficiencies comprising the total antenna efficiency. Radiation from the linear movement of unipolar charge driven both piezoelectrically and capacitively, the piezoelectrically actuated rotation of fixed dipole charges, and from flipping dipoles inside strain driven piezoelectrics are all presented and analyzed in terms of their design parameters and fundamental challenges. The efficiency of each type of acoustic antenna is referenced to an equivalent electrical antenna to benchmark the performance to a more familiar framework. Of the analyzed antenna types, piezoelectric alternating dipole antennas exhibit the most promise, with efficiencies more than a million times greater than electrically small antennas expected as piezoelectric materials, and resonator designs are optimized for acoustic radiation.

1.
R. H.
Olsson
, Microsystems Technology Office (MTO) Broad Agency Announcement: A MEchanically Based Antenna (AMEBA) (Document HR001117S0007) (
2016
).
2.
H. B.
Singh
and
R.
Pal
,
Def. Sci. J.
43
,
43
(
1993
).
3.
S.
Yarkan
,
S.
Güzelgöz
,
H.
Arslan
, and
R.
Murphy
,
IEEE Commun. Surv. Tutor.
11
,
125
(
2009
).
4.
J. K.
Hargreaves
and
R. D.
Hunsucker
,
The High-Latitude Ionosphere and Its Effects on Radio Propagation
(
Cambridge University Press
,
Cambridge
,
2007
).
5.
T.
Simpson
,
M.
Roberts
, and
E.
Berg
, in
IEEE Antennas and Propagation Society International Symposium
(
IEEE
,
2001
), Vol. 4, p. 250.
6.
H. A.
Wheeler
,
IEEE Trans. Antennas Propag.
23
,
462
(
1975
).
7.
R. M.
Fano
,
J. Franklin Inst.
249
,
57
(
1950
).
8.
9.
L. J.
Chu
,
J. Appl. Phys.
19
,
1163
(
1948
).
10.
R. E.
Collin
and
S.
Rothschild
,
IEEE Trans. Antennas Propag.
12
,
23
(
1964
).
11.
12.
J. S.
McLean
,
IEEE Trans. Antennas Propag.
44
,
672
(
1996
).
13.
J. D.
Maines
and
E. G. S.
Paige
,
Proc. IEEE
64
,
639
(
1976
).
14.
C. K.
Campbell
,
Proc. IEEE
77
,
1453
(
1989
).
15.
R.
Lu
,
T.
Manzaneque
,
Y.
Yang
,
L.
Gao
,
A.
Gao
, and
S.
Gong
,
IEEE Trans. Microw. Theory Techn.
67
,
1516
(
2019
).
16.
D. J.
Griffiths
,
Introduction to Electrodynamics
(
Pearson Education
,
2013
).
17.
N.
Barani
and
K.
Sarabandi
, in
2018 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2018
(
IEEE
,
2018
), p. 95.
18.
M. N. S.
Prasad
,
S.
Selvin
,
R. U.
Tok
,
Y.
Huang
, and
Y.
Wang
, in
2018 IEEE Radio and Wireless Symposium (RWS)
(
IEEE
,
2018
), p. 171.
19.
M.
Golkowski
,
J.
Park
,
J.
Bittle
,
B.
Babaiahgari
,
R. A. L.
Rorrer
, and
Z.
Celinski
, in
2018 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2018
(
IEEE
,
2018
), p. 65.
20.
Z.
Yao
,
Y. E.
Wang
,
S.
Keller
, and
G. P.
Carman
,
IEEE Trans. Antennas Propag.
63
,
3335
(
2015
).
21.
T.
Nan
,
H.
Lin
,
Y.
Gao
,
A.
Matyushov
,
G.
Yu
,
H.
Chen
,
N.
Sun
,
S.
Wei
,
Z.
Wang
,
M.
Li
,
X.
Wang
,
A.
Belkessam
,
R.
Guo
,
B.
Chen
,
J.
Zhou
,
Z.
Qian
,
Y.
Hui
,
M.
Rinaldi
,
M. E.
McConney
,
B. M.
Howe
,
Z.
Hu
,
J. G.
Jones
,
G. J.
Brown
, and
N. X.
Sun
,
Nat. Commun.
8
,
296
(
2017
).
22.
R. D.
Mindlin
,
Int. J. Solids Struct.
9
,
697
(
1973
).
23.
P. C. Y.
Lee
,
Y. G.
Kim
, and
J. H.
Prevost
,
J. Appl. Phys.
67
(
11
),
6633
(
1990
).
24.
J. P.
Domann
and
G. P.
Carman
,
J. Appl. Phys.
121
,
044905
(
2017
).
25.
M. A.
Kemp
,
M.
Franzi
,
A.
Haase
,
E.
Jongewaard
,
M. T.
Whittaker
,
M.
Kirkpatrick
, and
R.
Sparr
,
Nat. Commun.
10
,
1715
(
2019
).
26.
A.
Díaz-Ballester
,
S.
Castillo-Anguera
,
J. M.
Rafí
,
R.
Gómez-Martínez
,
G.
Abadal
,
E.
Figueras
,
J. A.
Plaza
,
J.
Esteve
,
M.
Mudarra
, and
J. C.
Cañadas
, in
2014 IEEE 9th Iberoamericana Congress Sensors
(
IEEE,
2014
), p. 1.
27.
W.
Künstler
,
Z.
Xia
,
T.
Weinhold
,
A.
Pucher
, and
R.
Gerhard-Multhaupt
,
Appl. Phys. A Mater. Sci. Process.
70
,
5
(
2000
).
28.
Y.
Suzuki
, in
PowerMEMS
, Leuven, Belgium,
2010
, pp.
47
52
.
29.
U.
Mescheder
,
B.
Müller
,
S.
Baborie
, and
P.
Urbanovic
,
J. Micromech. Microeng.
19
,
094003
(
2009
).
30.
H.
Asanuma
,
H.
Oguchi
,
M.
Hara
,
R.
Yoshida
, and
H.
Kuwano
,
Appl. Phys. Lett.
103
,
162901
(
2013
).
31.
S. R.
Best
and
D. L.
Hanna
,
IEEE Antennas Propag. Mag.
52
,
47
(
2010
).
32.
C.
Pfeiffer
,
IEEE Trans. Antennas Propag.
65
,
1642
(
2017
).
33.
A. E.
Hassanien
,
M.
Breen
,
M.-H.
Li
, and
S.
Gong
, e-print arXiv:1906.07797 (
2019
).
34.
C. E.
Shannon
,
Bell Syst. Tech. J.
27
,
379
(
1948
).
36.
S. R.
Best
,
IEEE Trans. Antennas Propag.
52
,
953
(
2004
).
37.
S. R.
Best
,
IEEE Trans. Antennas Propag.
53
,
1047
(
2005
).
39.
G. S.
Smith
,
IEEE Trans. Antennas Propag.
25
,
369
(
1977
).
40.
41.
H. L.
Thal
,
IEEE Trans. Antennas Propag.
54
,
2757
(
2006
).
42.
J. J.
Adams
,
S. C.
Slimmer
,
T. F.
Malkowski
,
E. B.
Duoss
,
J. A.
Lewis
, and
J. T.
Bernhard
,
IEEE Antennas Wirel. Propag. Lett.
10
,
1425
(
2011
).
43.
A.
Erentok
and
R. W.
Ziolkowski
,
IEEE Trans. Antennas Propag.
56
,
691
(
2008
).
44.
C.
Pfeiffer
,
X.
Xu
,
S. R.
Forrest
, and
A.
Grbic
,
Adv. Mater.
24
,
1166
(
2012
).
45.
M.
Shahpari
and
D. V.
Thiel
,
IEEE Trans. Antennas Propag.
66
,
3894
(
2018
).
46.
L.
Jelinek
,
K.
Schab
, and
M.
Capek
,
IEEE Trans. Antennas Propag.
66
,
6716
(
2018
).
47.
M.
Gustafsson
,
M.
Capek
, and
K.
Schab
,
IEEE Trans. Antennas Propag.
67
,
2482
(
2019
).
48.
W. L.
Stutzman
and
G. A.
Thiele
,
Antenna Theory and Design
(
John Wiley & Sons
,
2012
).
49.
J. D.
Larson
,
P. D.
Bradley
,
S.
Wartenberg
, and
R. C.
Ruby
,
Proc. IEEE Ultrason. Symp.
1
,
863
(
2000
).
50.
G.
Piazza
,
P. J.
Stephanou
, and
A. P.
Pisano
,
J. Microelectromech. Syst.
15
,
1406
(
2006
).
51.
K. K.
Park
,
M.
Kupnik
,
H. J.
Lee
,
Ö
Oralkan
, and
B. T.
Khuri-Yakub
,
Proc. IEEE Sens.
1
,
1024
(
2010
).
52.
S.
Boisseau
,
A.-B.
Duret
,
J.-J.
Chaillout
, and
G.
Despesse
,
EPJ Web Conf.
33
,
02010
(
2012
).
53.
J. J.
Lowke
,
J. Phys. D Appl. Phys.
25
,
202
(
1992
).
54.
N. H.
Malik
and
A. H.
Qureshi
,
IEEE Trans. Electr. Insul.
EI-14
,
1
(
1979
).
55.
Y.-J.
Yang
,
M.-A.
Gretillat
, and
S. D.
Senturia
, in
Proceedings of International Conference on Solid State Sensors and Actuators, Chicago, IL
(
IEEE
,
1997
), pp.
1093
1096
.
56.
L.
Mol
,
L. A.
Rocha
,
E.
Cretu
, and
R. F.
Wolffenbuttel
, in
TRANSDUCERS 2009—15th International Conference on Solid-State Sensors, Actuators and Microsystems
, Denver, CO (
IEEE
,
2009
), pp.
1425
1428
.
57.
R. A.
Draughn
and
A.
Catlin
,
J. Electrochem. Soc.
115
,
391
(
1968
).
58.
X.
Liu
,
Y.
Wang
,
X.
Le
,
Z.
Xu
,
C.
Wu
, and
J.
Xie
,
J. Micromech. Microeng.
28
,
105006
(
2018
).
59.
A.
Ballato
and
J. G.
Gualtieri
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
41
,
834
(
1994
).
60.
Y.
Yang
,
A.
Gao
,
R.
Lu
, and
S.
Gong
, in
2017 IEEE 30th International Conference on Micro Electro Mechanical Systems
(
IEEE
,
2017
), p. 942.
61.
62.
S. A.
Chandorkar
,
M.
Agarwal
,
R.
Melamud
,
R. N.
Candler
,
K. E.
Goodson
, and
T. W.
Kenny
, in
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems
(
IEEE
,
2008
), p. 74.
63.
A.
Safari
and
E. K.
Akdoǧan
,
Piezoelectric and Acoustic Materials for Transducer Applications
(
Springer
,
New York
,
NY
,
2008
).
64.
G. M.
Rebeiz
,
RF MEMS: Theory, Design, and Technology
(
John Wiley & Sons
,
2003
).
65.
G. K.
Fedder
,
Resonant MEMS: Fundamentals, Implementation, and Application
(
Wiley Online Library
,
2015
), pp.
119
146
.
66.
N.
Zouache
and
A.
Lefort
,
IEEE Trans. Dielectr. Electr. Insul.
4
,
358
(
1997
).
67.
A.
Emad
,
R.
Lu
,
M.-H.
Li
,
Y.
Yang
,
T.
Wu
, and
S.
Gong
,
IEEE Micro Electro Mech. Syst.
2019
,
282
.
68.
B.-J.
Kim
,
C.-S.
Kim
,
D.-J.
Kim
,
H.-H.
Lim
,
S.-K.
Park
,
M.
Cha
, and
K.-J.
Kim
,
J. Opt. Soc.
14
,
420
(
2010
).
69.
I.
Camlibel
,
J. Appl. Phys.
40
,
1690
(
1969
).
70.
J. H.
Ro
,
O. Y.
Jeon
,
T. H.
Kim
,
J. H.
Ro
, and
M.
Cha
,
Ferroelectrics
269
,
231
(
2002
).
71.
H.
Asanuma
,
H.
Oguchi
,
M.
Hara
, and
H.
Kuwano
, in
Transducers and Eurosensors XXVII, Barcelona, Spain
(
IEEE
,
2013
), pp.
1332
1335
.
72.
73.
M.-G.
Kang
,
W.-S.
Jung
,
C.-Y.
Kang
, and
S.-J.
Yoon
,
Actuators
5
,
5
(
2016
).
74.
Z.
Yang
and
J.
Zu
,
Energy Convers. Manag.
122
,
321
(
2016
).
You do not currently have access to this content.