We use the Boltzmann transport equation under the relaxation time approximation to investigate the effect of minority blocking on the transport properties of nanocomposites (NCs). Taking p-type Bi0.5Sb1.5Te3 NCs as an example, we find that the thermally excited minority carriers can be strongly scattered by engineered interfacial potential barriers. Such scattering phenomena suppress the bipolar effect, which is helpful to enhance the Seebeck coefficient and reduce the electronic thermal conductivity, especially at high temperatures. Further combining with the majority carriers low-energy filtering effect, the power factor and the figure of merit (ZT) can be significantly enhanced over a large temperature range from 300 K to 500 K. Such an improvement of ZT is attributed to the majority carriers low-energy filtering effect at low temperatures and to the minority carriers blocking effect at high temperatures. A principle that is helpful to provide guidance on the thermoelectric device design is identified: (1) blocking the minority carriers as often as possible and (2) filtering the majority carriers whose energy is lower than 2–3kBT near the cold end.

2.
G. J.
Snyder
and
E. S.
Toberer
,
Nature
7
,
105
(
2008
).
3.
A.
Shakouri
,
Annu. Rev. Mater. Res.
41
,
399
(
2011
).
5.
Thermoelectrics Handbook: Macro to Nano, edited by D. Rowe (CRC, Boca Raton, FL, 2005), p. 45.
6.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
).
7.
T. C.
Harman
,
P. J.
Taylor
,
M. P.
Walsh
, and
B. E.
LaForge
,
Science
27
,
2229
(
2002
).
8.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O’Quinn
,
Nature
413
,
597
(
2001
).
9.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
(
2008
).
10.
Y.-M.
Lin
and
M. S.
Dresselhaus
,
Phys. Rev. B
68
,
075304
(
2003
).
11.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R.
Yang
,
H.
Lee
,
D.
Wang
,
Z.
Ren
,
J.-P.
Fleurial
, and
P.
Gogna
,
Adv. Mater.
19
,
1043
(
2007
).
12.
N.
Gothard
,
X.
Ji
,
J.
He
, and
T. M.
Tritt
,
J. Appl. Phys.
103
,
054314
(
2008
).
13.
Y. Y.
Li
,
X. Y.
Qin
,
D.
Li
,
J.
Zhang
,
C.
Li
,
Y. F.
Liu
,
C. J.
Song
,
H. X.
Xin
, and
H. F.
Guo
,
Appl. Phys. Lett.
108
,
062104
(
2016
).
14.
S.
Fan
,
J.
Zhao
,
J.
Guo
,
Q.
Yan
,
J.
Ma
, and
H. H.
Hng
,
Appl. Phys. Lett.
96
,
182104
(
2010
).
15.
G. D.
Mahan
,
J. Appl. Phys.
76
,
4362
(
1994
).
16.
J.-H.
Bahk
,
Z.
Bian
, and
A.
Shakouri
,
Phys. Rev. B
87
,
075204
(
2013
).
17.
J.
Zhou
,
X.
Li
,
G.
Chen
, and
R.
Yang
,
Phys. Rev. B
82
,
115308
(
2010
).
18.
Y.
Zhang
and
G. D.
Stucky
,
Chem. Mater.
26
,
837
(
2014
).
19.
H.
Yang
,
J.-H.
Bahk
,
T.
Day
,
A. M. S.
Mohammed
,
G. J.
Snyder
,
A.
Shakouri
, and
Y.
Wu
,
Nano Lett.
15
,
1349
(
2015
).
20.
K. F.
Hsu
,
S.
Loo
,
F.
Guo
,
W.
Chen
,
J. S.
Dyck
,
C.
Uher
,
T.
Hogan
,
E. K.
Polychroniadis
, and
M. G.
Kanatzidis
,
Science
303
,
818
(
2004
).
21.
B.
Poudel
,
Q.
Hao
,
Y.
Ma
,
Y.
Lan
,
A.
Minnich
,
B.
Yu
,
X.
Yan
,
D.
Wang
,
A.
Muto
,
D.
Vashaee
,
X.
Chen
,
J.
Liu
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Science
320
,
634
(
2008
).
22.
J. M. O.
Zide
,
J.-H.
Bahk
,
R.
Singh
,
M.
Zebarjadi
,
G.
Zeng
,
H.
Lu
,
J. P.
Feser
,
D.
Xu
,
S. L.
Singer
,
Z. X.
Bian
,
A.
Majumdar
,
J. E.
Bowers
,
A.
Shakouri
, and
A. C.
Gossard
,
J. Appl. Phys.
108
,
123702
(
2010
).
23.
J.-H.
Bahk
and
A.
Shakouri
,
Appl. Phys. Lett.
105
,
052106
(
2014
).
24.
C.
Zhang
,
H.
Ng
,
Z.
Li
,
K. A.
Khor
, and
Q.
Xiong
,
ACS Appl. Mater. Interfaces
9
,
12501
(
2017
).
25.
R.
Wei
,
H.
Geng
,
L.
Zhang
,
X.
Liu
,
T.
He
, and
J.
Feng
,
Nano Energy
46
,
249
(
2018
).
26.
Q.
Hao
,
H.
Zhao
, and
D.
Xu
,
J. Appl. Phys.
121
,
094308
(
2017
).
27.
D. J.
Singh
,
Phys. Rev. B
81
,
195217
(
2010
).
28.
Thermoelectric Refrigeration, edited by H. Goldsmid (Plenum, New York, 1964), pp. 38–39.
29.
T. E.
Humphrey
,
M. F.
O’Dwyer
, and
H.
Linke
,
J. Phys. D Appl. Phys.
38
,
2051
(
2005
).
You do not currently have access to this content.