The mechanical properties of thin-film Li-ion battery electrodes are controlled by the microstructure of the constituent materials. In this work, a noncontact and nondestructive measurement of the mechanical properties of electrode films is performed by measurement of zero-group velocity (ZGV) resonances. Theoretical models are used to quantify the sensitivity of the ZGV resonances to changes in mechanical properties. The ZGV Lamb modes of a solid bilayer consisting of a thin metallic layer and a thin compliant coating layer are shown to be dependent on Young’s moduli, thicknesses, densities, and Poisson’s ratios of the layers. Experimental ZGV resonances are excited using a pulsed infrared laser and detected using a laser interferometer. Commercial-grade battery films with different coating materials, densities, and thicknesses are measured. Young’s moduli of the battery electrode layers are estimated using the combination of a theoretical model and experimental results. The effect of the calendering process on the battery materials is also investigated. Results suggest that Young’s modulus of the electrode coating increases drastically after the battery films are calendered. This technique can be used to quantitatively study the mechanical properties of Li-ion battery electrodes in order to improve overall battery performance.

1.
N.
Nitta
,
F.
Wu
,
J. T.
Lee
, and
G.
Yushin
, “
Li-ion battery materials: Present and future
,”
Mater. Today
18
,
252
264
(
2015
).
2.
J.
Li
,
Z.
Du
,
R. E.
Ruther
,
S. J.
AN
,
L. A.
David
,
K.
Hays
,
M.
Wood
,
N. D.
Phillip
,
Y.
Sheng
,
C.
Mao
,
S.
Kalnaus
,
C.
Daniel
, and
D. L.
Wood
, “
Toward low-cost, high-energy density, and high-power density lithium-ion batteries
,”
JOM
69
,
1484
1496
(
2017
).
3.
B. J.
Lanterman
,
A. A.
Riet
,
N. S.
Gates
,
J. D.
Flygare
,
A. D.
Cutler
,
J. E.
Vogel
,
D. R.
Wheeler
, and
B. A.
Mazzeo
, “
Micro-four-line probe to measure electronic conductivity and contact resistance of thin-film battery electrodes
,”
J. Electrochem. Soc.
162
,
A2145
A2151
(
2015
).
4.
J. E.
Vogel
,
M. M.
Forouzan
,
E. E.
Hardy
,
S. T.
Crawford
,
D. R.
Wheeler
, and
B. A.
Mazzeo
, “
Electrode microstructure controls localized electronic impedance in li-ion batteries
,”
Electrochim. Acta
297
,
820
825
(
2019
).
5.
G.
Chen
and
T.
Richardson
, “
Continuity and performance in composite electrodes
,”
J. Power Sources
195
(
16
),
5387
5390
(
2010
).
6.
S. J.
Harris
and
P.
Lu
, “
Effects of inhomogeneities nanoscale to mesoscale on the durability of li-ion batteries
,”
J. Phys. Chem. C
117
,
6481
(
2013
).
7.
P.
Balakrishnan
,
R.
Ramesh
, and
T. P.
Kumar
, “
Safety mechanisms in lithium-ion batteries
,”
J. Power Sources
155
,
401
414
(
2006
).
8.
K. L.
Dallon
,
J.
Yao
,
D. R.
Wheeler
, and
B. A.
Mazzeo
, “
Characterization of mechanical properties of battery electrode films from acoustic resonance measurements
,”
J. Appl. Phys.
123
,
135102
(
2018
).
9.
S. E.
Bobbin
,
J. W.
Wagner
, and
R. C.
Cammarata
, “
Determination of the flexural modulus of thin films from measurement of the first arrival of the symmetric lamb wave
,”
Appl. Phys. Lett.
59
,
1544
1546
(
1991
).
10.
M.
Castaings
and
P.
Cawley
, “
The generation, propagation, and detection of lamb waves in plates using aircoupled ultrasonic transducers
,”
J. Acoust. Soc. Am.
100
,
3070
3077
(
1996
).
11.
J.
Sermeus
,
R.
Sinha
,
K.
Vanstreels
,
P. M.
Vereecken
, and
C.
Glorieux
, “
Determination of elastic properties of a MnO2 coating by surface acoustic wave velocity dispersion analysis
,”
J. Appl. Phys.
116
,
023503
(
2014
).
12.
D.
Clorennec
,
C.
Prada
,
D.
Royer
, and
T. W.
Murray
, “
Laser impulse generation and interferometer detection of zero group velocity lamb mode resonance
,”
Appl. Phys. Lett.
89
,
024101
(
2006
).
13.
M.
Ces
,
D.
Clorennec
,
D.
Royer
, and
C.
Prada
, “
Thin layer thickness measurements by zero group velocity lamb mode resonances
,”
Rev. Sci. Instrum.
82
,
114902
(
2011
).
14.
S.
Mezil
,
J.
Laurent
,
D.
Royer
, and
C.
Prada
, “
Non contact probing of interfacial stiffnesses between two plates by zero-group velocity lamb modes
,”
Appl. Phys. Lett.
105
,
021605
(
2014
).
15.
C.
Grünsteidl
,
T.
Berer
,
M.
Hettich
, and
I.
Veres
, “
Determination of thickness and bulk sound velocities of isotropic plates using zero-group-velocity lamb waves
,”
Appl. Phys. Lett.
112
,
251905
(
2018
).
16.
C.
Grünsteidl
,
T. W.
Murray
,
T.
Berer
, and
I. A.
Veres
, “
Inverse characterization of plates using zero group velocity lamb modes
,”
Ultrasonics
65
,
1
4
(
2016
).
17.
A.
Gibson
,
J.
Popovics
, and
M.
Asce
, “
Lamb wave basis for impact-echo method analysis
,”
J. Eng. Mech. ASCE
131
,
1
(
2005
).
18.
J. L.
Tassoulas
and
T. R.
Akylas
, “
On wave modes with zero group velocity in an elastic layer
,”
J. Appl. Mech.
51
,
652
656
(
1984
).
19.
C. S.
Suh
and
C. P.
Burger
, “
Thermoelastic modeling of laser-induced stress waves in plates
,”
J. Therm. Stresses
21
,
829
847
(
1998
).
20.
F.
Bruno
,
J.
Laurent
,
P.
Jehanno
,
D.
Royer
, and
C.
Prada
, “
Laser beam shaping for enhanced zero-group velocity lamb modes generation
,”
J. Acoust. Soc. Am.
140
,
2829
2838
(
2016
).
21.
Q.
Xie
,
S.
Mezil
,
P. H.
Otsuka
,
M.
Tomoda
,
L.
Jérôme
,
O.
Matsuda
,
Z.
Shen
, and
O. B.
Wright
, “
Imaging gigahertz zero-group-velocity lamb waves
,”
Nat. Commun.
10
,
1
7
(
2019
).
22.
J.
Sermeus
,
R.
Sinha
,
K.
Vanstreels
,
P. M.
Vereecken
, and
C.
Glorieux
, “
Determination of elastic properties of a MnO2 coating by surface acoustic wave velocity dispersion analysis
,”
J. Appl. Phys.
116
,
023503
(
2014
).
23.
M.
Lowe
, “
Matrix techniques for modeling ultrasonic waves in multilayered media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
525
542
(
1995
).
24.
H.
Lamb
,
Lond. Math. Soc.
s1-21
,
365
377
(
1889
).
25.
L.
Rayleig
, “
On the free vibrations of an infinite plate of homogeneous isotropic elastic matter
,”
Lond. Math. Soc.
s1-20
,
225
237
(
1888
).
26.
F.
Chen
and
P. D.
Wilcox
, “
The effect of load on guided wave propagation
,”
Ultrasonics
47
,
111
122
(
2007
).
27.
I.
Bartoli
,
A.
Marzani
,
F. L.
di Scalea
, and
E.
Viola
, “
Modeling wave propagation in damped waveguides of arbitrary cross-section
,”
J. Sound Vib.
295
,
685
707
(
2006
).
28.
P.
Bocchini
,
A.
Marzani
, and
E.
Viola
, “
Graphical user interface for guided acoustic waves
,”
J. Comput. Civil Eng.
25
,
202
211
(
2011
).
29.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
, 4th ed. (
Wiley-VCH
,
1999
), p.
560
.
30.
M.
Chinmulgund
,
R.
Inturi
, and
J.
Barnard
, “
Effect of Ar gas pressure on growth, structure, and mechanical properties of sputtered Ti, Al, TiAl, and Ti3Al films
,”
Thin Solid Films
270
,
260
263
(
1995
), 22nd International Conference on Metallurgical Coatings and Thin Films.
31.
C.
Comte
and
J.
von Stebut
, “
Microprobe-type measurement of Young’s modulus and Poisson coefficient by means of depth sensing indentation and acoustic microscopy
,”
Surf. Coat. Technol.
154
,
42
48
(
2002
).
32.
J.
Dolbow
and
M.
Gosz
, “
Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures
,”
Mech. Mater.
23
,
311
321
(
1996
).
33.
L.
Brillouin
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
, 1st ed. (
McGraw-Hill Book Company
,
New York
,
1946
), p.
xii
.
34.
O.
Tofeldt
and
N.
Ryden
, “
Zero-group velocity modes in plates with continuous material variation through the thickness
,”
J. Acoust. Soc. Am.
141
,
3302
3311
(
2017
).
35.
O.
Balogun
,
T. W.
Murray
, and
C.
Prada
, “
Simulation and measurement of the optical excitation of the s1 zero group velocity lamb wave resonance in plates
,”
J. Appl. Phys.
102
,
064914
(
2007
).
36.
M. M.
Forouzan
,
C. W.
Chao
,
D.
Bustamante
,
B. A.
Mazzeo
, and
D. R.
Wheeler
, “
Experiment and simulation of the fabrication process of lithium-ion battery cathodes for determining microstructure and mechanical properties
,”
J. Power Sources
312
,
172
183
(
2016
).
37.
S. P.
Nadimpalli
,
V. A.
Sethuraman
,
D. P.
Abraham
,
A. F.
Bower
, and
P. R.
Guduru
, “
Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing
,”
J. Electrochem. Soc.
162
,
A2656
A2663
(
2015
).
38.
J.
Newman
, “
Optimization of porosity and thickness of a battery electrode by means of a reaction zone model
,”
J. Electrochem. Soc.
142
,
97
101
(
1995
).
39.
Y.
Sheng
,
C. R.
Fell
,
Y. K.
Son
,
B. M.
Metz
,
J.
Jiang
, and
B. C.
Church
, “
Effect of calendering on electrode wettability in lithium-ion batteries
,”
Front. Energy Res.
2
,
56
(
2014
).
You do not currently have access to this content.