Atmospheric microplasma jets (MPJs) sustained in rare gases have gained increased attention due to their potential to generate highly reactive species. In this paper, we present space- and time-resolved argon metastable densities, Ar(1s5), measured in an atmospheric pressure MPJ operated in Ar and propagating into ambient air using tunable diode laser absorption spectroscopy (1s5 → 2p9 optical transition). The MPJ was produced using a dielectric barrier discharge energized by short duration (230 ns) high-voltage positive pulses (4.2–6.2 kV) at a repetition frequency of 20 kHz. The spectral absorption line profile was recorded and allowed measurements of the absolute metastable Ar(1s5) density integrated in the line-of-sight of the laser beam under various operating conditions of the MPJ. The results reveal a sensitive dependence of the Ar(1s5) density on spatial coordinates, i.e., distance from the exit of the capillary tube of the discharge and from the axis of the argon jet. The highest Ar(1s5) densities of about 3 × 1013 cm−3 were measured at the axis of the argon jet at longitudinal distances between 4 and 5.5 mm downstream from the nozzle of the tube. The temporal distribution of the Ar(1s5) density, which presents three maxima, is thoroughly discussed in this paper. The spatial distribution of the effective Ar(1s5) lifetime (<250 ns) is also reported, giving some insight into the surrounding environment of the argon metastable atoms. The determined spatiotemporal distributions of the Ar(1s5) density can be useful for the optimization of argon MPJs for different applications like surface or biomedical processes.

1.
M.
Laroussi
and
X.
Lu
, “
Room-temperature atmospheric pressure plasma plume for biomedical application
,”
Appl. Phys. Lett.
87
,
113902
(
2005
).
2.
M.
Laroussi
,
W.
Hynes
,
T.
Akan
,
X.
Lu
, and
C.
Tendero
, “
The plasma pencil: A source of hypersonic cold plasma bullets for biomedical applications
,”
IEEE Trans. Plasma Sci.
36
,
1298
(
2008
).
3.
X.
Lu
,
Z.
Jiang
,
Q.
Xiong
,
Z.
Tang
, and
Y.
Pan
, “
A single electrode room-temperature plasma jet device for biomedical applications
,”
Appl. Phys. Lett.
92
,
151504
(
2008
).
4.
M. G.
Kong
,
G.
Kroesen
,
G.
Morfill
,
T.
Nosenko
,
T.
Shimizu
,
Y. V.
Dijk
, and
J. L.
Zimmermann
, “
Plasma medicine: An introductory review
,”
New J. Phys.
11
,
115012
(
2009
).
5.
G.
Lloyd
,
G.
Friedman
,
S.
Jafri
,
G.
Schultz
,
A.
Fridman
, and
K.
Harding
, “
Gas plasma: Medical uses and developments in wound care
,”
Plasma Process. Polym.
7
,
194
(
2009
).
6.
W.-S.
Kang
,
Y.-C.
Hong
,
Y.-B.
Hong
,
J.-H.
Kim
, and
H. S.
Uhm
, “
Atmospheric-pressure cold plasma jet for medical applications
,”
Surf. Coat. Technol.
205
,
S418
(
2010
).
7.
H. M.
Joh
,
S. J.
Kim
,
T. H.
Chung
, and
S. H.
Leem
, “
Comparison of the characteristics of atmospheric pressure plasma jets using different working gases and applications to plasma-cancer cell interactions
,”
AIP Adv.
3
,
092128
(
2013
).
8.
J.
Benedikt
,
K.
Focke
,
A.
Yanguas-Gil
, and
A.
von Keudell
, “
Atmospheric pressure microplasma jet as a depositing tool
,”
Appl. Phys. Lett.
89
,
251504
(
2006
).
9.
R.
Ye
,
T.
Kagohashi
, and
W.
Zheng
, “
Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas
,”
Thin Solid Films
518
,
971
(
2009
).
10.
X.
Shao
,
G.
Zhang
,
J.
Zhan
, and
G.
Xu
, “
Research on surface modification of polytetrafluoroethylene coupled with argon dielectric barrier discharge plasma jet characteristics
,”
IEEE Trans. Plasma Sci.
39
,
3095
(
2011
).
11.
J.-S.
Oh
,
O. T.
Olabanji
,
C.
Hale
,
R.
Mariani
,
K.
Kontis
, and
J. W.
Bradley
, “
Imaging gas and plasma interactions in the surface-chemical modification of polymers using micro-plasma jets
,”
J. Phys. D Appl. Phys.
44
,
155206
(
2011
).
12.
G. A.
Harris
,
A. S.
Galhena
, and
F. M.
Fernández
, “
Ambient sampling/ionization mass spectrometry: Applications and current trends
,”
Anal. Chem.
83
,
4508
(
2011
).
13.
J. K.
Dalgleish
,
M.
Wleklinski
,
J. T.
Shelley
,
C. C.
Mulligan
,
Z.
Ouyang
, and
G. R.
Cooks
, “
Arrays of low-temperature plasma probes for ambient ionization mass spectrometry
,”
Rapid Commun. Mass Spectrom.
27
,
135
(
2013
).
14.
S.
Martínez-Jarquín
and
R.
Winkler
, “
Design of a low-temperature plasma (LTP) probe with adjustable output temperature and variable beam diameter for the direct detection of organic molecules
,”
Rapid Commun. Mass Spectrom.
27
,
629
(
2013
).
15.
X.
Damany
,
S.
Pasquiers
,
N.
Blin-Simiand
,
G.
Bauville
,
B.
Bournonville
,
M.
Fleury
,
P.
Jeanney
, and
J.
Santos Sousa
, “
Impact of an atmospheric argon plasma jet on a dielectric surface and desorption of organic molecules
,”
Eur. Phys. J. Appl. Phys.
75
,
24713
(
2016
).
16.
M.
Teschke
,
J.
Kedzierski
,
E. G.
Finantu-Dinu
,
D.
Korzec
, and
J.
Engemann
, “
High-speed photographs of a dielectric barrier atmospheric pressure plasma jet
,”
IEEE Trans. Plasma Sci.
33
,
310
(
2005
).
17.
J. L.
Walsh
,
J. J.
Shi
, and
M. G.
Kong
, “
Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets
,”
Appl. Phys. Lett.
88
,
171501
(
2006
).
18.
K.
Urabe
,
T.
Morita
,
K.
Tachibana
, and
B. N.
Ganguly
, “
Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements
,”
J. Phys. D Appl. Phys.
43
,
095201
(
2010
).
19.
J. L.
Walsh
,
F.
Iza
,
N. B.
Janson
,
V. J.
Law
, and
M. G.
Kong
, “
Three distinct modes in a cold atmospheric pressure plasma jet
,”
J. Phys. D Appl. Phys.
43
,
075201
(
2010
).
20.
Q. T.
Algwari
and
D.
O’Connell
, “
Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet
,”
Appl. Phys. Lett.
99
,
121501
(
2011
).
21.
C.
Douat
,
G.
Bauville
,
M.
Fleury
,
M.
Laroussi
, and
V.
Puech
, “
Dynamics of colliding microplasma jets
,”
Plasma Sources Sci. Technol.
21
,
034010
(
2012
).
22.
A.
Begum
,
M.
Laroussi
, and
M. R.
Pervez
, “
Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon
,”
AIP Adv.
3
,
062117
(
2013
).
23.
A.
Sobota
,
O.
Guaitella
, and
A.
Rousseau
, “
The influence of the geometry and electrical characteristics on the formation of the atmospheric pressure plasma jet
,”
Plasma Sources Sci. Technol.
23
,
025016
(
2014
).
24.
S.
Hübner
,
J.
Santos Sousa
,
V.
Puech
,
G. M. W.
Kroesen
, and
N.
Sadeghi
, “
Electron properties in an atmospheric helium plasma jet determined by Thomson scattering
,”
J. Phys. D Appl. Phys.
47
,
432001
(
2014
).
25.
D.
Riès
,
G.
Dilecce
,
E.
Robert
,
P. F.
Ambrico
,
S.
Dozias
, and
J.-M.
Pouvesle
, “
LIF and fast imaging plasma jet characterization relevant for NTP biomedical applications
,”
J. Phys. D Appl. Phys.
47
,
275401
(
2014
).
26.
H.
Motomura
,
H.
Matsuba
,
M.
Kawata
, and
M.
Jinno
, “
Gas-specific characteristics of argon low-frequency atmospheric-pressure nonequilibrium microplasma jet
,”
Jpn. J. Appl. Phys.
46
,
L939
(
2007
).
27.
H.
Kim
,
A.
Brockhaus
, and
J.
Engemann
, “
Atmospheric pressure argon plasma jet using a cylindrical piezoelectric transformer
,”
Appl. Phys. Lett.
95
,
211501
(
2009
).
28.
R.
Bussiahn
,
E.
Kindel
,
H.
Lange
, and
K. D.
Weltmann
, “
Spatially and temporally resolved measurements of argon metastable atoms in the effluent of a cold atmospheric pressure plasma jet
,”
J. Phys. D Appl. Phys.
43
,
165201
(
2010
).
29.
Q.
Li
,
W.-C.
Zhu
,
X.-M.
Zhu
, and
Y.-K.
Pu
, “
Effects of penning ionization on the discharge patterns of atmospheric pressure plasma jets
,”
J. Phys. D Appl. Phys.
43
,
382001
(
2010
).
30.
X.
Lei
and
Z.
Fang
, “
DBD plasma jet in atmospheric pressure neon
,”
IEEE Trans. Plasma Sci.
39
,
2288
(
2011
).
31.
B. L.
Sands
,
S. K.
Huang
, and
B. N.
Ganguly
, “
Current scaling in an atmospheric pressure capillary dielectric barrier discharge
,”
Appl. Phys. Lett.
95
,
051502
(
2009
).
32.
B. L.
Sands
,
R. J.
Leiweke
, and
B. N.
Ganguly
, “
Spatiotemporally resolved Ar(1s5) metastable measurements in a streamer-like He/Ar atmospheric pressure plasma jet
,”
J. Phys. D Appl. Phys.
43
,
282001
(
2010
).
33.
S.
Reuter
,
J.
Santos Sousa
,
G. D.
Stancu
, and
J. P. H.
van Helden
, “
Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets
,”
Plasma Sources Sci. Technol.
24
,
054001
(
2015
).
34.
S.
Schröter
,
R.
Pothiraja
,
P.
Awakowicz
,
N.
Bibinov
,
M.
Böke
,
B.
Niermann
, and
J.
Winter
, “
Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy
,”
J. Phys. D Appl. Phys.
46
,
464009
(
2013
).
35.
S.
Iseni
,
A.
Schmidt-Bleker
,
J.
Winter
,
K.-D.
Weltmann
, and
S.
Reuter
, “
Atmospheric pressure streamer follows the turbulent argon air boundary in a MHz argon plasma jet investigated by OH-tracer PLIF spectroscopy
,”
J. Phys. D Appl. Phys.
47
,
152001
(
2014
).
36.
B.
Niermann
,
M.
Boke
,
N.
Sadeghi
, and
J.
Winter
, “
Space resolved density measurements of argon and helium metastable atoms in radiofrequency generated He-Ar micro-plasmas
,”
Eur. Phys. J. D
60
,
489
(
2010
).
37.
B.
Niermann
,
R.
Reuter
,
T.
Kuschel
,
J.
Benedikt
,
M.
Böke
, and
J.
Winter
, “
Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure
,”
Plasma Sources Sci. Technol.
21
,
034002
(
2012
).
38.
J.
Winter
,
J.
Santos Sousa
,
N.
Sadeghi
,
A.
Schmidt-Blecker
,
S.
Reuter
, and
V.
Puech
, “
The spatio-temporal distribution of He (23S1) metastable atoms in a MHz-driven helium plasma jet is influenced by the oxygen/nitrogen ratio of the surrounding atmosphere
,”
Plasma Sources Sci. Technol.
24
,
025015
(
2015
).
39.
C.
Douat
,
I.
Kacem
,
N.
Sadeghi
,
G.
Bauville
,
M.
Fleury
, and
V.
Puech
, “
Space-time resolved density of helium metastable atoms in a nanosecond pulsed plasma jet: Influence of high voltage and pulse frequency
,”
J. Phys. D Appl. Phys.
49
,
285204
(
2016
).
40.
G.
Cadot
,
C.
Douat
,
V.
Puech
, and
N.
Sadeghi
, “
Spatio-temporally resolved mapping of helium metastable density in an atmospheric pressure plasma jet
,”
IEEE Trans. Plasma Sci.
42
,
2446
(
2014
).
41.
N.
Sadeghi
, “
Practical aspects of molecular spectroscopy in plasmas 6. Molecular spectroscopy techniques applied for processing plasma diagnostics
,”
J. Plasma Fusion Res.
80
,
767
(
2004
).
42.
See http://physics.nist.gov/PhysRefData/ASD/lines_form.html for “NIST Atomic Spectra Database.”
43.
J.
Godart
and
V.
Puech
, “
Kinetic studies of the H2(a3Σg+ ( b2Σu+) continuum emission of an Ar-H2 mixture pumped by e-beam
,”
Chem. Phys.
46
,
23
(
1980
).
44.
J.
Bretagne
,
J.
Godart
, and
V.
Puech
, “
Kinetic study of electron beam excited argon
,”
Beitr. Plasmaphys.
23
,
295
(
1983
).
45.
J.
Santos Sousa
,
S.
Hübner
,
A.
Sobota
,
S.
Pasquiers
,
V.
Puech
, and
N.
Sadeghi
, “
Electron properties in atmospheric pressure plasma jets determined by Thomson scattering
,” in
Proceedings of the 23rd ESCAMPIG
,
Bratislava, Slovakia
,
12–16 July
(EPS,
2016
).
46.
J.
Gudmundsson
and
E.
Thorsteinsson
, “
Oxygen discharges diluted with argon: Dissociation processes
,”
Plasma Sources Sci. Technol.
16
,
399
(
2007
).
47.
S.
Ashida
,
C.
Lee
, and
M.
Lieberman
, “
Spatially averaged (global) model of time modulated high density argon plasmas
,”
J. Vac. Sci. Technol. A
13
,
2498
(
1995
).
48.
C.
Ferreira
,
J.
Loureiro
, and
A.
Richard
, “
Populations in the metastable and the resonance levels of argon and stepwise ionization effects in a low-pressure argon positive column
,”
J. Appl. Phys.
57
,
82
(
1985
).
49.
E.
Robert
,
T.
Darny
,
S.
Dozias
,
S.
Iseni
, and
J. M.
Pouvesle
, “
New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays
,”
Phys. Plasmas
22
,
122007
(
2015
).
50.
W.
Van Gaens
and
A.
Bogaerts
, “
Kinetic modelling for an atmospheric pressure argon plasma jet in humid air
,”
J. Phys. D Appl. Phys.
46
,
275201
(
2013
).
You do not currently have access to this content.