We report a quantitative multiscale (MS) procedure based on the recently developed Stochastic Kinetic Mean Field approach (SKMF) [Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. J. Tomán, B. Gajdics, and A. M. Gusak, Comput. Phys. Commun. 204, 31–37 (2016)], combined with the Phase Field model (PFM) and CALPHAD database, to study the nucleation-growth-coarsening process in alloys. The SKMF approach reproduces the nucleation and early growth of precipitates in the matrix, and the PFM then simulates the coarsening of the microstructure. To ensure the consistency of the procedure, the length and time scales of SKMF and PFM are explicitly connected. Moreover, both the effective interaction energies used in the SKMF and the free energy used in the PFM are taken from CALPHAD database. Two different implementations of the procedure are proposed. First, the postnucleation microstructure as provided by SKMF is used as the initial condition for subsequent PFM simulations. Second, only the particle size distribution and particle density are transferred to PFM, thereby giving access to bigger systems. The proposed procedure is tested in the specific case of the Ag-Cu model alloy.

1.
G.
Lu
and
E.
Kaxiras
, “An overview of multiscale simulations of materials,” (2004); preprint arXiv:cond-mat/0401073.
2.
J. A.
Elliott
, “
Novel approaches to multiscale modelling in materials science
,”
Int. Mater. Rev.
56
(
4
),
207
225
(
2011
).
3.
L.
Chen
,
C.
Wolverton
,
V.
Vaithyanathan
, and
Z.
Liu
, “
Modeling solid-state phase transformations and microstructure evolution
,”
MRS Bull.
26
(
3
),
197
202
(
2001
).
4.
V.
Vaithyanathan
,
C.
Wolverton
, and
L.
Chen
, “
Multiscale modeling of precipitate microstructure evolution
,”
Phys. Rev. Lett.
88
(
12
),
125503
(
2002
).
5.
V.
Vaithyanathan
,
C.
Wolverton
, and
L.
Chen
, “
Multiscale modeling of θ precipitation in Al–Cu binary alloys
,”
Acta Mater.
52
(
10
),
2973
2987
(
2004
).
6.
D.
Molnar
,
R.
Mukherjee
,
A.
Choudhury
,
A.
Mora
,
P.
Binkele
,
M.
Selzer
,
B.
Nestler
, and
S.
Schmauder
, “
Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations
,”
Acta Mater.
60
(
20
),
6961
6971
(
2012
).
7.
G.
Demange
,
L.
Lunéville
,
V.
Pontikis
, and
D.
Simeone
, “
Prediction of irradiation induced microstructures using a multiscale method coupling atomistic and phase field modeling: Application to the Ag-Cu model alloy
,”
J. Appl. Phys.
121
(
12
),
125108
(
2017
).
8.
F.
Soisson
and
G.
Martin
, “
Monte Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics
,”
Phys. Rev. B
62
(
1
),
203
(
2000
).
9.
V. L.
Ginzburg
,
V. L.
Ginzburg
, and
L. D.
Landau
,
Zh. Eksp. Teor. Fiz.
20
,
1064
(
1950
).
10.
P. C.
Hohenberg
and
B. I.
Halperin
, “
Theory of dynamic critical phenomena
,”
Rev. Mod. Phys.
49
,
435
479
(
1977
).
11.
H.
Emmerich
,
The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models
(
Springer Science & Business Media
,
2003
), Vol. 73.
12.
J. A.
Warren
and
B. T.
Murray
, “
Ostwald ripening and coalescence of a binary alloy in two dimensions using a phase-field model
,”
Modell. Simul. Mater. Sci. Eng.
4
(
2
),
215
(
1996
).
13.
Y.
Wen
,
J.
Lill
,
S.
Chen
, and
J.
Simmons
, “
A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys
,”
Acta Mater.
58
(
3
),
875
885
(
2010
).
14.
L.-Q.
Chen
, “
Phase-field models for microstructure evolution
,”
Annu. Rev. Mater. Res.
32
(
1
),
113
140
(
2002
).
15.
Z.
Erdélyi
,
M.
Pasichnyy
,
V.
Bezpalchuk
,
J. J.
Tomán
,
B.
Gajdics
, and
A. M.
Gusak
, “
Stochastic kinetic mean field model
,”
Comput. Phys. Commun.
204
,
31
37
(
2016
),
16.
See http://skmf.eu for the source code and a tutorial of the SKMF model.
17.
N.
Storozhuk
,
K.
Sopiga
, and
A.
Gusak
, “
Mean-field and quasi-phase-field models of nucleation and phase competition in reactive diffusion
,”
Philos. Mag.
93
(
16
),
1999
2012
(
2013
).
18.
G.
Martin
, “
Atomic mobility in Cahns diffusion model
,”
Phys. Rev. B
41
(
4
),
2279
(
1990
).
19.
I.
Vernyhora
,
D.
Ledue
,
R.
Patte
, and
H.
Zapolsky
, “
Monte Carlo investigation of the correlation between magnetic and chemical ordering in NiFe alloys
,”
J. Magn. Magn. Mater.
322
(
17
),
2465
2470
(
2010
).
20.
A.
Gusak
and
T.
Zaporozhets
, “
Martins kinetic mean-field model revisited—Frequency noise approach versus Monte Carlo
,”
Metallofiz. Noveishie Tekhnol.
40
(
11
),
1415
1435
(
2018
).
21.
A.
Gusak
,
T.
Zaporozhets
, and
N.
Storozhuk
, “
Phase competition in solid-state reactive diffusion revisited—Stochastic kinetic mean-field approach
,”
J. Chem. Phys.
150
(
17
),
174109
(
2019
).
22.
G.
Demange
,
S.
Dépinoy
,
L.
Lunéville
,
D.
Simeone
, and
V.
Pontikis
, “
Irradiation-based design of mechanically resistant microstructures tuned via multiscale phase-field modeling
,”
Sci. Rep.
8
(
1
),
10237
(
2018
).
23.
Z.
Erdélyi
,
M.
Sladecek
,
L.-M.
Stadler
,
I.
Zizak
,
G. A.
Langer
,
M.
Kis-Varga
,
D. L.
Beke
, and
B.
Sepiol
, “
Transient interface sharpening in miscible alloys
,”
Science
306
(
5703
),
1913
1915
(
2004
),
24.
Z.
Erdélyi
,
I. A.
Szabó
, and
D. L.
Beke
, “
Interface sharpening instead of broadening by diffusion in ideal binary alloys
,”
Phys. Rev. Lett.
89
,
165901
(
2002
),
25.
B. D.
Gajdics
,
J. J.
Tomán
, and
Z.
Erdélyi
, “
Composition dependent gradient energy coefficient: How the asymmetric miscibility gap affects spinodal decomposition in Ag-Cu?
,”
Calphad
(to be published).
26.
P. R.
Subramanian
and
J. H.
Perepezko
, “
The Ag-Cu (silver-copper) system
,”
J. Phase Equilibr.
14
(
1
),
62
75
(
1993
).
27.
G.
Demange
,
L.
Lunéville
,
V.
Pontikis
, and
D.
Simeone
, “
Prediction of irradiation induced microstructures using a multiscale method coupling atomistic and phase field modeling: Application to the Ag-Cu model alloy
,”
J. Appl. Phys.
121
(
12
),
125108
(
2017
).
28.
D. B.
Butrymowicz
,
J. R.
Manning
, and
M. E.
Read
, “
Diffusion in copper and copper alloys, part II. Copper-silver and copper-gold systems
,”
J. Phys. Chem. Ref. Data
3
(
2
),
527
602
(
1974
).
29.
J. W.
Cahn
, “
On spinodal decomposition
,”
Acta Metall.
9
(
9
),
795
(
1961
).
30.
V. L.
Ginzburg
and
L. D.
Landau
,
J. Exp. Theor. phys. USSR
20
,
1064
(
1950
).
31.
G.
Demange
,
M.
Chamaillard
,
H.
Zapolsky
,
M.
Lavrskyi
,
A.
Vaugeois
,
L.
Lunéville
,
D.
Simeone
, and
R.
Patte
, “
Generalization of the Fourier-spectral Eyre scheme for the phase-field equations: Application to self-assembly dynamics in materials
,”
Comput. Mater. Sci.
144
,
11
22
(
2018
).
32.
G.
Radnóczi
,
E.
Bokányi
,
Z.
Erdélyi
, and
F.
Misják
, “
Size dependent spinodal decomposition in Cu-Ag nanoparticles
,”
Acta Mater.
123
,
82
89
(
2017
).
33.
W. P.
Davey
, “
Precision measurements of the lattice constants of twelve common metals
,”
Phys. Rev.
25
,
753
761
(
1925
),
34.
R.
Ghez
,
Diffusion Phenomena: Cases and Studies
(
Springer
2010
).
35.
Y.
Adda
,
J.
Philibert
, and
V.
Pontikis
, “
Validity of the diffusion equation at the atomic scale investigated via numerical simulations
,”
Phys. Rev. B
85
,
144121
(
2012
),
36.
Z.
Erdélyi
,
D. L.
Beke
,
P.
Nemes
, and
G. A.
Langer
, “
On the range of validity of the continuum approach for nonlinear diffusional mixing of multilayers
,”
Philos. Mag. A
79
(
8
),
1757
1768
(
1999
),
37.
Z.
Erdélyi
and
D. L.
Beke
, “
Importance of proper choice of transition rates in kinetic simulations of dynamic processes
,”
Phys. Rev. B
70
,
245428
(
2004
),
38.
C.
Wagner
, “
Theory of precipitate change by redissolution
,”
Z. Elektrochem.
65
,
581
591
(
1961
).
39.
I. M.
Lifshitz
, “
The kinetics of precipitation from supersaturated solid solutions
,”
J. Phys. Chem. Solids
19
(
1–2
),
35
50
(
1961
).
40.
A.
Ardell
, “
The effect of volume fraction on particle coarsening: Theoretical considerations
,”
Acta Metall.
20
(
1
),
61
71
(
1972
).
41.
A.
Baldan
, “
Review progress in Ostwald ripening theories and their applications to nickel-base superalloys part I: Ostwald ripening theories
,”
J. Mater. Sci.
37
(
11
),
2171
2202
(
2002
).
42.
P.
Streitenberger
, “
Analytical description of phase coarsening at high volume fractions
,”
Acta Mater.
61
(
13
),
5026
5035
(
2013
).
43.
V.
Vaithyanathan
and
L.
Chen
, “
Coarsening of ordered intermetallic precipitates with coherency stress
,”
Acta Mater.
50
(
16
),
4061
4073
(
2002
).
44.
T.
Wang
,
G.
Sheng
,
Z.-K.
Liu
, and
L.-Q.
Chen
, “
Coarsening kinetics of γ precipitates in the Ni–Al–Mo system
,”
Acta Mater.
56
(
19
),
5544
5551
(
2008
).
You do not currently have access to this content.