We present an analytical model for the Seebeck coefficient S of superlattice materials that explicitly takes into account the energy relaxation due to electron-optical phonon (e-ph) scattering. In such materials, the Seebeck coefficient is not only determined by the bulk Seebeck values of the materials but, in addition, is dependent on the energy relaxation process of charge carriers as they propagate from the less-conductive barrier region into the more-conductive well region. We calculate S as a function of the well size d, where carrier energy becomes increasingly relaxed within the well for d>λE, where λE is the energy relaxation length. We validate the model against more advanced quantum transport simulations based on the nonequilibrium Green’s function (NEGF) method and also with an experiment, and we find very good agreement. In the case in which no energy relaxation is taken into account, the results deviate substantially from the NEGF results. The model also yields accurate results with only a small deviation (up to 3%) when varying the optical phonon energy ω or the e-ph coupling strength D0, physical parameters that would determine λE. As a first order approximation, the model is valid for nanocomposite materials, and it could prove useful in the identification of material combinations and in the estimation of ideal sizes in the design of nanoengineered thermoelectric materials with enhanced power factor performance.

1.
G.
Ding
,
G. Y.
Gao
,
Z.
Huang
,
W.
Zhang
, and
K.
Yao
,
Nanotechnology
27
,
375703
(
2016
).
2.
H.
Huang
,
Y.
Cui
,
Q.
Li
,
C.
Dun
,
W.
Zhou
,
W.
Huang
,
L.
Chen
,
C. A.
Hewitt
, and
D. L.
Carroll
,
Nano Energy
26
,
172
(
2016
).
3.
W.
Huang
,
X.
Luo
,
C. K.
Gan
,
S. Y.
Quek
, and
G.
Liang
,
Phys. Chem. Chem. Phys.
16
,
10866
(
2014
).
4.
M.
Beekman
,
D. T.
Morelli
, and
G. S.
Nolas
,
Nat. Mater.
14
,
1182
(
2015
).
5.
C.
Fu
,
S.
Bai
,
Y.
Liu
,
Y.
Tang
,
L.
Chen
,
X.
Zhao
, and
T.
Zhu
,
Nat. Commun.
6
,
8144
(
2015
).
6.
L.-D.
Zhao
,
S.-H.
Lo
,
Y.
Zhang
,
H.
Sun
,
G.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
508
,
373
(
2014
).
7.
D.
Beretta
,
N.
Neophytou
,
J. M.
Hodges
,
M. G.
Kanatzidis
,
D.
Narducci
,
M.
Martin-Gonzalez
,
M.
Beekman
,
B.
Balke
,
G.
Cerrettii
,
W.
Tremel
et al., “
Thermoelectrics: From history, a window to the future
,”
Mater. Sci. Eng. R. Rep.
(to be published).
8.
H.
Mizuno
,
S.
Mossa
, and
J.-L.
Barrat
,
Sci. Rep.
5
,
14116
(
2015
).
9.
M.
Thesberg
,
M.
Pourfath
,
H.
Kosina
, and
N.
Neophytou
,
J. Appl. Phys.
118
,
224301
(
2015
).
10.
M.
Thesberg
,
H.
Kosina
, and
N.
Neophytou
,
J. Appl. Phys.
120
,
234302
(
2016
).
11.
Y. M.
Zhou
and
L.-D.
Zhao
,
Adv. Mater.
29
,
1702676
(
2017
).
12.
P.
Priyadarshi
,
A.
Sharma
,
S.
Mukherjee
, and
B.
Muralidharan
,
J. Phys. D Appl. Phys.
51
,
185301
(
2018
).
13.
R.
Venkatasubramanian
,
T.
Colpitts
,
E.
Watko
, and
J.
Hutchby
, in Proceedings IEEE 15th International Conference on Thermoelectrics (IEEE Service Center, 1996).
14.
A.
Ishida
,
T.
Yamada
,
D.
Cao
,
Y.
Inoue
,
M.
Veis
, and
T.
Kita
,
J. Appl. Phys.
106
,
023718
(
2009
).
15.
G.
Zeng
,
J. M. O.
Zide
,
W.
Kim
,
J. E.
Bowers
,
A. C.
Gossard
,
Z.
Bian
,
Y.
Zhang
,
A.
Shakouri
,
S. L.
Singer
, and
A.
Majumdar
,
J. Appl. Phys.
101
,
034502
(
2007
).
16.
Z.
Bian
,
M.
Zebarjadi
,
R.
Singh
,
Y.
Ezzahri
,
A.
Shakouri
,
G.
Zeng
,
J.-H.
Bahk
,
J. E.
Bowers
,
J. M. O.
Zide
, and
A. C.
Gossard
,
Phys. Rev. B
76
,
205311
(
2007
).
17.
N.
Neophytou
,
X.
Zianni
,
H.
Kosina
,
S.
Frabboni
,
B.
Lorenzi
, and
D.
Narducci
,
Nanotechnology
24
,
205402
(
2013
).
18.
V.
Vargiamidis
and
N.
Neophytou
,
Phys. Rev. B
99
,
045405
(
2019
).
19.
N.
Neophytou
and
H.
Kosina
,
J. Appl. Phys.
114
,
044315
(
2013
).
20.
A.
Popescu
,
L.
Woods
,
J.
Martin
, and
G.
Nolas
,
Phys. Rev. B
79
,
205302
(
2009
).
21.
C.
Bera
,
M.
Soulier
,
C.
Navone
,
G.
Roux
,
J.
Simon
,
S.
Volt
, and
N.
Mingo
,
J. Appl. Phys.
108
,
124306
(
2010
).
22.
M.
Bartkowiak
,
G. D.
Mahan
, and
M. T.
Terry
, in Semiconductors and Semimetals (Elsevier, 2001), Vol. 70, pp. 245–271.
23.
S. O.
Koswatta
,
S.
Hasan
,
M. S.
Lundstrom
,
M. P.
Anantram
, and
D. E.
Nikonov
,
IEEE Trans. Electron Devices
54
,
2339
(
2007
).
24.
M. P.
Anantram
,
M.
Lundstrom
, and
D.
Nikonov
,
Proc. IEEE
96
,
1511
(
2008
).
25.
R.
Kim
and
M.
Lundstrom
,
J. Appl. Phys.
110
,
034511
(
2011
).
26.
X.
Zianni
and
D.
Narducci
,
J. Appl. Phys.
117
,
035102
(
2015
).
27.
M.
Lundstrom
,
Fundamentals of Carrier Transport
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
28.
B.
Gonzalez
,
V.
Palankovski
,
H.
Kosina
,
A.
Hernandez
, and
S.
Selberherr
,
Solid State Electron.
43
,
1791
(
1999
).
29.
R.
Kim
and
M.
Lundstrom
,
J. Appl. Phys.
111
,
024508
(
2012
).
30.
B.
Moyzhes
and
V.
Nemchinsky
,
Appl. Phys. Lett.
73
,
1895
(
1998
).
31.
N.
Neophytou
,
X.
Zianni
,
H.
Kosina
,
S.
Frabboni
,
B.
Lorenzi
, and
D.
Narducci
,
J. Electron. Mater.
43
,
1896
(
2014
).
32.
M.
Thesberg
,
H.
Kosina
, and
N.
Neophytou
,
Phys. Rev. B
95
,
125206
(
2017
).
33.
In experimental settings, one extracts the Seebeck coefficient from the open circuit voltage upon the application of a thermal gradient along the channel, as S=ΔV/ΔT, which equivalently can also be computed by S=I(ΔV=0)/GΔT. In Ref. 25, it was validated that the two methods of extracting the Seebeck coefficient are equivalent, which makes it easier in time consuming simulations (as the ones we undertake) to only run the ΔV0 case and still be able to extract the Seebeck coefficient by integrating the energy of the current flow over the length of the channel.
34.
J.
Mao
,
J.
Shuai
,
S.
Song
,
Y.
Wu
,
R.
Dally
,
J.
Zhou
,
Z.
Liu
,
J.
Sun
,
Q.
Zhang
,
C.
dela Cruz
,
S.
Wilson
,
Y.
Pei
,
D. J.
Singh
,
G.
Chen
,
C.-W.
Chu
, and
Z.
Ren
,
Proc. Natl. Acad. Sci. U.S.A.
114
(
40
),
10548
(
2017
).
35.
M.
Thesberg
,
M.
Pourfath
,
N.
Neophytou
, and
H.
Kosina
,
J. Electron. Mater.
45
,
1584
(
2016
).
You do not currently have access to this content.