Technologically relevant magnetic nanoparticles for biomedicine are rarely noninteracting single-domain nanoparticles; instead, they are often interacting, with complex physical and magnetic structures. In this paper, we present both experimental and simulated magnetic hysteresis loops of a system of magnetic nanoparticles with significant interparticle interactions and a well-defined intraparticle structure which are used for magnetic nanoparticle hyperthermia cancer treatment. Experimental measurements were made at 11 K on suspensions of magnetic nanoparticles dispersed in H2O which have been frozen in a range of applied magnetic fields to tune the interparticle interactions. Micromagnetic simulations of hysteresis loops investigated the roles of particle orientation with respect to the field and of particle chaining in the shape of the hysteresis loops. In addition, we present an analysis of the magnetic anisotropy arising from the combination of magnetocrystalline and shape anisotropy, given the well-defined internal structure of the nanoparticles. We find that the shape of the experimental hysteresis loops can be explained by the internal magnetic structure, modified by the effects of interparticle interactions from chaining.

1.
R. K.
Gilchrist
,
R.
Medal
,
W. D.
Shorey
,
R. C.
Hanselman
,
J. C.
Parrott
, and
C. B.
Taylor
,
Ann. Surg.
146
,
596
(
1957
).
2.
E. A.
Perigo
,
G.
Hemery
,
O.
Sandre
,
D.
Ortega
,
E.
Garaio
,
F.
Plazaola
, and
F. J.
Teran
,
Appl. Phys. Rev.
2
,
041302
(
2015
).
3.
J.-E.
Kim
,
J.-Y.
Shin
, and
M.-H.
Cho
,
Arch. Toxicol.
86
,
685
(
2012
).
4.
P. C.
Lauterbur
,
Nature
242
,
190
(
1973
).
5.
B.
Gleich
and
J.
Weizenecker
,
Nature
435
,
1214
(
2005
).
6.
K.
Raj
and
R.
Moskowitz
,
IEEE Trans. Magn.
MAG-16
,
358
(
1980
).
7.
Y. T.
Choi
and
N. M.
Werely
,
J. Aircr.
40
,
432
(
2003
).
8.
N. A.
Usov
,
M. L.
Fdez-Gubieda
, and
J. M.
Barandiaran
,
J. Appl. Phys.
113
,
023907
(
2013
).
9.
J. W. F.
Brown
,
Ann. N.Y. Acad. Sci.
147
,
461
(
1969
).
10.
E. C.
Stoner
and
E. P.
Wohlfarth
,
Philos. Trans. R. Soc. Lond. Ser. A
240
,
599
(
1948
).
11.
R.
Skomski
,
Simple Models of Magnetism
(
Oxford University Press
,
2008
).
12.
J.
Carrey
,
B.
Mehdaoui
, and
M.
Respaud
,
J. Appl. Phys.
109
,
083921
(
2011
).
13.
S.
Ruta
,
R.
Chantrell
, and
O.
Hovorka
,
Sci. Rep.
5
,
9090
(
2015
).
14.
C.
Martinez-Boubeta
,
K.
Simeonidis
,
A.
Makridis
,
M.
Angelakeris
,
O.
Iglesias
,
P.
Guardia
,
A.
Cabot
,
L.
Yedra
,
S.
Estrade
,
F.
Peiro
et al.,
Sci. Rep.
3
,
1652
(
2013
).
15.
D.
Serantes
,
K.
Simeonidis
,
M.
Angelakeris
,
O.
Chubykalo-Fesenko
,
M.
Marciello
,
M.
del Puerto Morales
,
D.
Baldomir
, and
C.
Martinez-Boubeta
,
J. Phys. Chem. C
118
,
5927
(
2014
).
16.
Z.
Nedelkoski
,
D.
Kepaptsoglou
,
L.
Lari
,
T.
Wen
,
R. A.
Booth
,
S. D.
Oberdick
,
P. L.
Galindo
,
Q. M.
Ramasse
,
R. F. L.
Evans
,
S.
Majetich
et al.,
Sci. Rep.
7
,
45997
(
2017
).
17.
T. L.
Gilbert
and
J. M.
Kelly
, Anomalous Rotational Damping in Ferromagnetic Sheets (American Institute of Electrical Engineers, 1955).
18.
T. L.
Gilbert
,
IEEE Trans. Magn.
40
,
3443
(
2004
).
19.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B. V.
Waeyenberge
,
AIP Adv.
4
,
107133
(
2014
).
20.
M. J.
Donahue
and
D. G.
Porter
, Tech. Rep. Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD, 1999.
21.
R. F. L.
Evans
,
W. J.
Fan
,
P.
Chureemart
,
T. A.
Ostler
,
M. O. A.
Ellis
, and
R. W.
Chantrell
,
J. Phys. Condens. Matter
26
,
103202
(
2014
).
22.
R.
Yanes
,
O.
Chubykalo-Fesenko
,
H.
Kachkachi
,
D. A.
Garanin
,
R.
Evans
, and
R. W.
Chantrell
,
Phys. Rev. B
76
,
064416
(
2007
).
23.
A.
Attaluri
,
S. K.
Kandala
,
M.
Wabler
,
H.
Zhou
,
C.
Cornejo
,
M.
Armour
,
M.
Hedayati
,
Y.
Zhang
,
T. L.
DeWeese
,
C.
Herman
et al.,
Int. J. Hyperthermia
31
,
359
(
2015
).
24.
C. L.
Dennis
,
A. J.
Jackson
,
J. A.
Borchers
,
P. J.
Hoopes
,
R.
Strawbridge
,
A. R.
Foreman
,
J.
van Lierop
,
C.
Grüttner
, and
R.
Ivkov
,
Nanotechnology
20
,
395103
(
2009
).
25.
C.
Haase
and
U.
Nowak
,
Phys. Rev. B
85
,
045435
(
2012
).
26.
C.
Grüttner
,
K.
Müller
,
J.
Teller
,
F.
Westphal
,
A.
Foreman
, and
R.
Ivkov
,
J. Magn. Magn. Mater.
311
,
181
(
2007
).
27.
K. L.
Krycka
,
A. J.
Jackson
,
J. A.
Borchers
,
J.
Shih
,
R.
Briber
,
R.
Ivkov
,
C.
Grüttner
, and
C. L.
Dennis
,
J. Appl. Phys.
109
,
07B513
(
2011
).
28.
C. L.
Dennis
,
K. L.
Krycka
,
J. A.
Borchers
,
R. D.
Desautels
,
J.
van Lierop
,
N. F.
Huls
,
A. J.
Jackson
,
C.
Grüttner
, and
R.
Ivkov
,
Adv. Funct. Mater.
25
,
4300
(
2015
).
29.
Z.
Boekelheide
and
C. L.
Dennis
,
AIP Adv.
6
,
085201
(
2016
).
30.
C. L.
Dennis
,
A. J.
Jackson
,
J. A.
Borchers
,
C.
Grüttner
, and
R.
Ivkov
,
Nanotechnology
29
,
215705
(
2018
).
31.
C. L.
Dennis
,
A. J.
Jackson
,
J. A.
Borchers
,
R.
Ivkov
,
A. R.
Foreman
,
P. J.
Hoopes
,
R.
Strawbridge
,
Z.
Pierce
,
E.
Goerntiz
,
J. W.
Lau
et al.,
J. Phys. D Appl. Phys.
41
,
134020
(
2008
).
32.
D. E.
Bordelon
,
C.
Cornejo
,
C.
Grüttner
,
F.
Westphal
,
T. L.
DeWeese
, and
R.
Ivkov
,
J. Appl. Phys.
109
,
124904
(
2011
).
33.
Certain commercial equipment, instruments, or materials are identified in this paper to more completely define the experimental setup. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified is necessarily the best available for the purpose.
34.
J.
Nogues
,
J.
Sort
,
V.
Langlais
,
V.
Skumryev
,
S.
Surinach
,
J. S.
Munoz
, and
M. D.
Baro
,
Phys. Rep.
422
,
65
(
2005
).
35.
O.
Iglesias
,
A.
Labarta
, and
X.
Batlle
,
J. Nanosci. Nanotechnol.
8
,
2761
(
2008
).
36.
VSM Application Note 1096-301 Performing VSM Measurements in PPMS High-Field (14 T or Higher) Magnets (Quantum Design, 2004).
37.
MPMS Application Note 1014-208 Remnant Fields in MPMS Superconducting Magnets (Quantum Design, 2002).
38.
C.
Song
,
B.
Cui
,
H. Y.
Yu
, and
F.
Pan
,
J. Appl. Phys.
114
,
183906
(
2013
).
39.
J.
Smit
and
H. P. J.
Wijn
,
Ferrites
(
John Wiley and Sons
,
1959
).
40.
B. A.
Calhoun
,
Phys. Rev.
94
,
1577
(
1954
).
41.
C. A.
Domenicali
,
Phys. Rev.
78
,
458
(
1950
).
42.
P.
Kucheryavy
,
J.
He
,
V. T.
John
,
P.
Maharjan
,
L.
Spinu
,
G. Z.
Goloverda
, and
V. L.
Kolesnichenko
,
Langmuir
29
,
710
(
2013
).
43.
M.
Ziese
,
R.
Hohne
,
P.
Esquinazi
, and
P.
Busch
,
Phys. Rev. B
66
,
134408
(
2002
).
44.
A.
Urtizberea
,
A.
Arizaga
,
N. J. O.
Silva
,
A.
Millán
,
F.
Palacio
, and
F.
Luis
,
J. Appl. Phys.
111
,
093910
(
2012
).
45.
N. A.
Usov
and
J. M.
Barandiaran
,
J. Appl. Phys.
112
,
053915
(
2012
).
46.
H.
Mamiya
,
J.
Nishigaki
,
M.
Fukunaga
,
I.
Furukawa
,
J.
Cuya
, and
B.
Jeyadevan
, Magnetic Properties of Well-Isolated Magnetite Nanoparticles, paper presented at the International Conference for Fine Particle Magnetism (ICFPM), Gaithersburg, MD, 13 June 2016.
47.
J.-C.
Eloi
,
M.
Okuda
,
S. E. W.
Jones
, and
W.
Schwarzacher
,
Biophys. J.
104
,
2681
(
2013
).
48.
J.-C.
Eloi
,
M.
Okuda
,
S. C.
Carreira
,
W.
Schwarzacher
,
M. J.
Correia
, and
W.
Figueiredo
,
J. Phys. Condens. Matter
26
,
146006
(
2014
).
49.
C. L.
Dennis
and
R.
Ivkov
,
Int. J. Hyperthermia
29
,
715
(
2013
).
50.
Y.
Zhang
,
L.
Sun
,
Y.
Fu
,
Z. C.
Huang
,
X. J.
Bai
,
Y.
Zhai
,
J.
Du
, and
H. R.
Zhai
,
J. Phys. Chem. C
113
,
8152
(
2009
).
51.
Y.
Qi
,
L.
Zhang
, and
W.
Wen
,
J. Phys. D Appl. Phys.
36
,
L10
(
2003
).
52.
B.
Rana
,
A.
Ganguly
, and
A.
Barman
,
IEEE Trans. Magn.
47
,
2859
(
2011
).
53.
L.-M.
Wang
,
A.
Qdemat
,
O.
Petracic
,
E.
Kentzinger
,
U.
Rücker
,
F.
Zheng
,
P.-H.
Lu
,
X.-K.
Wei
,
R. E.
Dunin-Borkowski
, and
T.
Brückel
,
Phys. Chem. Chem. Phys.
21
,
6171
(
2019
).
54.
J.
Fischbacher
,
A.
Kovacs
,
H.
Oezelt
,
M.
Gusenbauer
,
T.
Schrefl
,
L.
Exl
,
D.
Givord
,
N. M.
Dempsey
,
G.
Zimanyi
,
M.
Winklhofer
et al.,
Appl. Phys. Lett.
111
,
072404
(
2017
).
You do not currently have access to this content.