We present experimental and theoretical results on electronic structure, galvanomagnetic, and thermoelectric properties (Hall coefficient, electrical resistivity, and Seebeck coefficient) of Co1xMxSi (M=Fe, Ni; x=0–0.1) compounds at temperatures from 80 K to 800 K. CoSi is a long known promising thermoelectric semimetal. Recently, it was shown that CoSi and the CoSi-based alloys belong to the family of materials with a topologically nontrivial electronic structure. We discuss possible connection of the observed dependences of the transport properties on temperature and alloy composition with ab initio electronic structure of the compounds. The electronic structure was calculated using density functional theory, and transport properties were analyzed in constant relaxation time, as well as in more realistic energy-dependent relaxation time approximations.

1.
M.
Fedorov
and
V.
Zaitsev
, “Semimetals as materials for thermoelectric generators,” in CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995), pp. 321–328.
2.
S.
Asanabe
,
D.
Shinoda
, and
Y.
Sasaki
, “
Semimetallic properties of Co1xFexSi solid solutions
,”
Phys. Rev.
134
,
A774
A779
(
1964
).
3.
S.
Asanabe
, “
Conduction phenomena in monosilicides of iron group transition elements
,”
J. Phys. Soc. Jpn.
20
,
933
937
(
1965
).
4.
Z. J.
Pan
,
L. T.
Zhang
, and
J. S.
Wu
, “
Electronic structure and transport properties of doped CoSi single crystal
,”
J. Appl. Phys.
101
,
033715
(
2007
).
5.
A.
Sakai
,
F.
Ishii
,
Y.
Onose
,
Y.
Tomioka
,
S.
Yotsuhashi
,
H.
Adachi
,
N.
Nagaosa
, and
Y.
Tokura
, “
Thermoelectric power in transition-metal monosilicides
,”
J. Phys. Soc. Jpn.
76
,
093601
(
2007
).
6.
F.
Ishii
,
H.
Kotaka
, and
T.
Onishi
, “
Spin-orbit interaction effects in the electronic structure of B20-type CoSi: First-principles density functional study
,”
JPS Conf. Proc.
3
,
016019
(
2014
).
7.
L.
Pauling
and
A. M.
Soldate
, “
The nature of the bonds in the iron silicide FeSi and related crystals
,”
Acta Cryst.
1
,
212
216
(
1948
).
8.
B.
Bradlyn
,
J.
Cano
,
Z.
Wang
,
M. G.
Vergniory
,
C.
Felser
,
R. J.
Cava
, and
B. A.
Bernevig
, “
Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals
,”
Science
353
,
aaf5037
(
2016
).
9.
G.
Chang
,
S.-Y.
Xu
,
B. J.
Wieder
,
D. S.
Sanchez
,
S.-M.
Huang
,
I.
Belopolski
,
T.-R.
Chang
,
S.
Zhang
,
A.
Bansil
,
H.
Lin
, and
M. Z.
Hasan
, “
Unconventional chiral fermions and large topological Fermi arcs in RhSi
,”
Phys. Rev. Lett.
119
,
206401
(
2017
).
10.
P.
Tang
,
Q.
Zhou
, and
S.-C.
Zhang
, “
Multiple types of topological fermions in transition metal silicides
,”
Phys. Rev. Lett.
119
,
206402
(
2017
).
11.
D. A.
Pshenay-Severin
,
Y. V.
Ivanov
,
A. A.
Burkov
, and
A. T.
Burkov
, “
Band structure and unconventional electronic topology of CoSi
,”
J. Phys.: Condens. Matter
30
,
135501
(
2018
).
12.
A.
Burkov
,
Y.
Ivanov
,
K.
Nielsch
,
S.
Novikov
,
N. R.
Perez
,
D.
Pshenay-Severin
,
H.
Reith
,
L.
Schnatmann
,
G.
Schierning
, and
M.
Volkov
, “
Thermoelectric properties of silicides with topologically non-trivial electronic structure: Co1xMxSi (M=Fe, Ni)
,”
Mater. Today Proc.
8
,
540
545
(
2019
).
13.
A. S.
Antonov
,
S. V.
Novikov
,
D. A.
Pshenay-Severin
, and
A. T.
Burkov
, “
Thermoelectric properties of cobalt monosilicide and its alloys
,”
Semiconductors
53
,
667
672
(
2019
).
14.
A.
Ovchinnikov
,
P.
Konstantinov
,
D.
Pshenay-Severin
, and
A.
Burkov
, “
Galvanomagnetic properties of cobalt monosilicide and alloys based on it
,”
Semiconductors
53
,
737
741
(
2019
).
15.
D.
Pshenay-Severin
,
Y. V.
Ivanov
,
A.
Burkov
,
S.
Novikov
,
V.
Zaitsev
, and
H.
Reith
, “
Electronic structure and thermoelectric properties of transition metal monosilicides
,”
J. Electron. Mater.
47
,
3277
3281
(
2018
).
16.
M. V.
Vedernikov
,
P. P.
Konstantinov
, and
A. T.
Burkov
, “Development of automated techniques of measuring of temperature dependences of the transport properties of thermoelectric materials,” in Eighth International Conference on Thermoelectric Energy Conversion, edited by H. Scherer (INPL, Nancy, France, 1989), pp. 45–48.
17.
A.
Burkov
,
A.
Heinrich
,
P.
Konstantinov
,
T.
Nakama
, and
K.
Yagasaki
, “
Experimental set-up for thermopower and resistivity measurements at 100–1300 K
,”
Meas. Sci. Technol.
12
,
264
272
(
2001
).
18.
A. T.
Burkov
,
A. I.
Fedotov
, and
S. V.
Novikov
, “Methods and apparatus for measuring thermopower and electrical conductivity of thermoelectric materials at high temperatures,” in Thermoelectrics for Power Generation—A Look at Trends in the Technology (INTECH, 2016), pp. 353–389.
19.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
20.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
21.
L. P.
Zelenin
,
F. A.
Sidorenko
, and
P. V.
Geld
, “
Structural peculiarities of the ϵ-phase of the Co-Si system
,”
Izv. Vyss. Uchebnyh Zaved. Tsvetnaya Metall.
7
,
146
(
1964
) (in Russian).
22.
P. V. C.
Medeiros
,
S.
Stafström
, and
J.
Björk
, “
Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding
,”
Phys. Rev. B
89
,
041407
(
2014
).
23.
P. V. C.
Medeiros
,
S. S.
Tsirkin
,
S.
Stafström
, and
J.
Björk
, “
Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator
,”
Phys. Rev. B
91
,
041116
(
2015
).
24.
D. A.
Pshenay-Severin
,
Y. V.
Ivanov
, and
A. T.
Burkov
, “
The effect of energy-dependent electron scattering on thermoelectric transport in novel topological semimetal CoSi
,”
J. Phys.: Condens. Matter
30
,
475501
(
2018
).
25.
S.
Poncé
,
E.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
133
(
2016
).
26.
A. A.
Mostofi
,
J. R.
Yates
,
G.
Pizzi
,
Y.-S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
, “
An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
,”
Comput. Phys. Commun.
185
,
2309
(
2014
).
27.
G.
Pizzi
,
D.
Volja
,
B.
Kozinsky
,
M.
Fornari
, and
N.
Marzari
, “
BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis
,”
Comput. Phys. Commun.
185
,
422
429
(
2014
).
28.
P.
Dutta
and
S. K.
Pandey
, “
Investigating the electronic structure of MSi (M= Cr, Mn, Fe, Co) and calculating Ueff and J by using cDFT
,”
Comput. Condens. Matter
16
,
e00325
(
2018
).
29.
Z.
Rao
,
H.
Li
,
T.
Zhang
,
S.
Tian
,
C.
Li
,
B.
Fu
,
C.
Tang
,
L.
Wang
,
Z.
Li
,
W.
Fan
,
J.
Li
,
Y.
Huang
,
Z.
Liu
,
Y.
Long
,
C.
Fang
,
H.
Weng
,
Y.
Shi
,
H.
Lei
,
Y.
Sun
,
T.
Qian
, and
H.
Ding
, “
Observation of unconventional chiral fermions with long Fermi arcs in CoSi
,”
Nature
567
,
496
499
(
2019
).
30.
D. S.
Sanchez
,
I.
Belopolski
,
T. A.
Cochran
,
X.
Xu
,
J.-X.
Yin
,
G.
Chang
,
W.
Xie
,
K.
Manna
,
V.
Suess
,
C.-Y.
Huang
,
N.
Alidoust
,
D.
Multer
,
S. S.
Zhang
,
N. S. X.
Wang
,
G.-Q.
Wang
,
T.-R.
Chang
,
C.
Felser
,
S.-Y.
Xu
,
S.
Jia
,
H.
Lin
, and
M. Z.
Hasan
, “
Topological chiral crystals with helicoid-arc quantum states
,”
Nature
567
,
500
505
(
2019
).
31.
D.
Takane
,
Z.
Wang
,
S.
Souma
,
K.
Nakayama
,
T.
Nakamura
,
H.
Oinuma
,
Y.
Nakata
,
H.
Iwasawa
,
C.
Cacho
,
T.
Kim
,
K.
Horiba
,
H.
Kumigashira
,
T.
Takahashi
,
Y.
Ando
, and
T.
Sato
, “
Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi
,”
Phys. Rev. Lett.
122
,
076402
(
2019
).
32.
Y.
Xia
,
J.
Park
,
F.
Zhou
, and
V.
Ozolinš
, “
High thermoelectric power factor in intermetallic CoSi arising from energy filtering of electrons by phonon scattering
,”
Phys. Rev. Appl.
11
,
024017
(
2019
).
You do not currently have access to this content.