Surface-enhanced Raman spectroscopy (SERS) is a promising optical method for analyzing molecular samples of various nature. Most SERS studies are of an applied nature, indicating a serious potential for their application in analytical practice. Dendritelike nanostructures have great potential for SERS, but the lack of a method for their predictable production significantly limits their implementation. In this paper, a method for controllably obtaining spatially separated, self-organized, and highly-branched silver dendrites via template synthesis in pores of SiO2/Si is proposed. The dendritic branches have nanoscale roughness, creating many plasmon-active “hotspots” required for SERS. The first held 3D modeling of the external electromagnetic wave interaction with such a dendrite, as well as experimental data, confirms this theory. Using the example of a reference biological analyte, which is usually used as a label for other biological molecules, the dendrites’ SERS-sensitivity up to 10−15M was demonstrated with an enhancement factor of 108. The comparison of simulation results with SERS experiments allows distinguishing the presence of electromagnetic and chemical contributions, which have a different effect at various analyte concentrations.

1.
C.
Krafft
,
I. W.
Schie
,
T.
Meyer
,
M.
Schmitt
, and
J.
Popp
,
Chem. Soc. Rev.
45
,
1819
(
2016
).
2.
M.
Moskovits
,
J. Raman Spectrosc.
36
,
485
(
2005
).
3.
K.
Kneipp
,
H.
Kneipp
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
J. Phys.: Condens. Matter
14
,
R597
(
2002
).
4.
C.
Höppener
and
L.
Novotny
,
Q. Rev. Biophys.
45
,
209
(
2012
).
5.
D.
Yakimchuk
,
E.
Kaniukov
,
V.
Bundyukova
,
S.
Demyanov
, and
V.
Sivakov
, “
Self-organization of plasmonic nanostructures in pores of silica template for SERS
,” in
Fundamental and Applied Nano-Electromagnetics II
(
Springer
,
Dordrecht
,
2019
), Chap. 5, pp.
75
90
.
6.
E.
Ringe
,
B.
Sharma
,
A.-I.
Henry
,
L. D.
Marks
, and
R. P.
Van Duyne
,
Phys. Chem. Chem. Phys.
15
,
4110
(
2013
).
7.
A.
Gopalakrishnan
,
M.
Chirumamilla
,
F.
De Angelis
,
A.
Toma
,
R. P.
Zaccaria
, and
R.
Krahne
,
ACS Nano
8
,
7986
(
2014
).
8.
S.
Gwo
,
C. Y.
Wang
,
H. Y.
Chen
,
M. H.
Lin
,
L.
Sun
,
X.
Li
,
W. L.
Chen
,
Y. M.
Chang
, and
H.
Ahn
,
ACS Photonics
3
,
1371
(
2016
).
9.
G.
Santoro
,
S.
Yu
,
M.
Schwartzkopf
,
P.
Zhang
,
S.
Koyiloth Vayalil
,
J. F. H.
Risch
,
M. A.
Rübhausen
,
M.
Hernández
,
C.
Domingo
, and
S. V.
Roth
,
Appl. Phys. Lett.
104
,
243107
(
2014
).
10.
K.
Kneipp
,
Phys. Today
60
,
40
(
2007
).
11.
Y.
Xia
and
D. J.
Campbell
,
J. Chem. Educ.
84
,
91
(
2007
).
12.
E.
Kaniukov
,
D.
Yakimchuk
,
G.
Arzumanyan
,
H.
Terryn
,
K.
Baert
,
A.
Kozlovskiy
,
M.
Zdorovets
,
E.
Belonogov
, and
S.
Demyanov
,
Philos. Mag.
97
,
2268
(
2017
).
13.
T. V.
Shahbazyan
and
M. I.
Stockman
,
Plasmonics: Theory and Applications
(
Springer Netherlands
,
Dordrecht
,
2013
).
14.
B.
Sharma
,
R. R.
Frontiera
,
A.-I.
Henry
,
E.
Ringe
, and
R. P.
Van Duyne
,
Mater. Today
15
,
16
(
2012
).
15.
A.
Krasnok
,
M.
Caldarola
,
N.
Bonod
, and
A.
Alú
,
Adv. Opt. Mater.
6
,
1701094
(
2018
).
16.
K.
Kneipp
,
J. Phys. Chem. C
120
,
21076
(
2016
).
17.
L. J.
Zhao
,
L.
Jensen
, and
G. C.
Schatz
,
J. Am. Chem. Soc.
128
,
2911
(
2006
).
18.
J. F.
Arenas
,
M. S.
Woolley
,
I. L.
Tocón
,
J. C.
Otero
, and
J. I.
Marcos
,
J. Chem. Phys.
112
,
7669
(
2000
).
19.
L.
Xia
,
M.
Chen
,
X.
Zhao
,
Z.
Zhang
,
J.
Xia
,
H.
Xu
, and
M.
Sun
,
J. Raman Spectrosc.
45
,
533
(
2014
).
21.
A.
Balčytis
,
Y.
Nishijima
,
S.
Krishnamoorthy
,
A.
Kuchmizhak
,
P. R.
Stoddart
,
R.
Petruškevičius
, and
S.
Juodkazis
,
Adv. Opt. Mater.
6
,
1800292
(
2018
).
22.
S. V.
Makarov
,
V. A.
Milichko
,
I. S.
Mukhin
,
I. I.
Shishkin
,
D. A.
Zuev
,
A. M.
Mozharov
,
A. E.
Krasnok
, and
P. A.
Belov
,
Laser Photonics Rev.
10
,
91
(
2016
).
23.
M. E.
Abdelsalam
,
S.
Mahajan
,
P. N.
Bartlett
,
J. J.
Baumberg
, and
A. E.
Rusell
,
J. Am. Chem. Soc.
129
,
7399
(
2007
).
24.
A. Y.
Panarin
,
S. N.
Terekhov
,
K. I.
Kholostov
, and
V. P.
Bondarenko
,
Appl. Surf. Sci.
256
,
6969
(
2010
).
25.
H.
Bandarenka
,
K.
Artsemyeva
,
S.
Redko
,
A.
Panarin
,
S.
Terekhov
, and
V.
Bondarenko
,
Phys. Status Solidi C
10
,
624
(
2013
).
26.
D.
Dong
,
L. W.
Yap
,
D. M.
Smilgies
,
K. J.
Si
,
Q.
Shi
, and
W.
Cheng
,
Nanoscale
10
,
5065
(
2018
).
27.
P. R.
Brejna
and
P. R.
Griffiths
,
Appl. Spectrosc.
64
,
493
(
2010
).
28.
T.
Qiu
,
X. L.
Wu
,
Y. F.
Mei
,
P. K.
Chu
, and
G. G.
Siu
,
Appl. Phys. A: Mater. Sci. Process.
81
,
669
(
2005
).
29.
T.
Qiu
,
X. L.
Wu
,
J. C.
Shen
,
Y.
Xia
,
P. N.
Shen
, and
P. K.
Chu
,
Appl. Surf. Sci.
254
,
5399
(
2008
).
30.
M. M.
Alam
,
W.
Ji
,
H. N.
Luitel
,
Y.
Ozaki
,
T.
Watari
, and
K.
Nakashima
,
RSC Adv.
4
,
52686
(
2014
).
31.
W.
Ye
,
C.
Shen
,
J.
Tian
,
C.
Wang
,
C.
Hui
, and
H.
Gao
,
Solid State Sci.
11
,
1088
(
2009
).
32.
X.
Sun
,
L.
Lin
,
Z.
Li
,
Z.
Zhang
, and
J.
Feng
,
Mater. Lett.
63
,
2306
(
2009
).
33.
C. K.
Senthil Kumaran
,
S.
Agilan
,
D.
Velauthapillai
,
N.
Muthukumarasamy
,
M.
Thambidurai
,
A.
Ranjitha
,
R.
Balasundaraprabhu
, and
T. S.
Senthil
,
Adv. Mater. Res.
678
,
27
(
2013
).
34.
S. J.
Hurst
,
E. K.
Payne
,
L.
Qin
, and
C. A.
Mirkin
,
Angew. Chem. Int. Ed.
45
,
2672
(
2006
).
35.
H.
Masuda
and
K.
Fukuda
,
Science
268
,
1466
(
1995
).
36.
E. Y.
Kaniukov
,
J.
Ustarroz
,
D. V.
Yakimchuk
,
M.
Petrova
,
H.
Terryn
,
V.
Sivakov
, and
A. V.
Petrov
,
Nanotechnology
27
,
115305
(
2016
).
37.
H.
Bandarenka
,
K.
Girel
,
S.
Zavatski
,
A.
Panarin
, and
S.
Terekhov
,
Materials
11
,
852
(
2018
).
38.
Y.
Cao
and
T. E.
Mallouk
,
Chem. Mater.
20
,
5260
(
2008
).
39.
M.
Wirtz
and
C. R.
Martin
,
Adv. Mater.
15
,
455
(
2003
).
40.
V.
Bundyukova
,
E.
Kaniukov
,
A.
Shumskaya
,
A.
Smirnov
,
M.
Kravchenko
, and
D.
Yakimchuk
,
EPJ Web Conf.
201
,
01001
(
2019
).
41.
D.
Yakimchuk
,
V.
Bundyukova
,
A.
Smirnov
, and
E.
Kaniukov
,
Phys. Status Solidi B
256
,
1800316
(
2019
).
42.
V.
Bundyukova
,
D.
Yakimchuk
,
E.
Shumskaya
,
A.
Smirnov
,
M.
Yarmolich
, and
E.
Kaniukov
,
Mater. Today: Proc.
7
,
828
(
2019
).
43.
D.
Yakimchuk
,
E.
Kaniukov
,
V.
Bundyukova
,
L.
Osminkina
,
S.
Teichert
,
S.
Demyanov
, and
V.
Sivakov
,
MRS Commun.
8
,
95
(
2018
).
44.
M.
Abouda-Lachiheb
,
N.
Nafie
, and
M.
Bouaicha
,
Nanoscale Res. Lett.
7
,
455
(
2012
).
45.
W.
Ye
,
Y.
Chang
,
C.
Ma
,
B.
Jia
,
G.
Cao
, and
C.
Wang
,
Appl. Surf. Sci.
253
,
3419
(
2007
).
46.
R.
Krakow
,
R. J.
Bennett
,
D. N.
Johnstone
,
Z.
Vukmanovic
,
W.
Solano-Alvarez
,
S. J.
Lainé
,
J. F.
Einsle
,
P. A.
Midgley
,
C. M. F.
Rae
, and
R.
Hielscher
,
Proc. R. Soc. A
473
,
20170274
(
2017
).
47.
N.
Jahr
,
M.
Anwar
,
O.
Stranik
,
N.
Hädrich
,
N.
Vogler
,
A.
Csaki
,
J.
Popp
, and
W.
Fritzsche
,
J. Phys. Chem. C
117
,
7751
(
2013
).
48.
V. I.
Fabelinsky
,
D. N.
Kozlov
,
S. N.
Orlov
,
Y. N.
Polivanov
,
I. A.
Shcherbakov
,
V. V.
Smirnov
,
K. A.
Vereschagin
,
G. M.
Arzumanyan
,
K. Z.
Mamatkulov
,
K. N.
Afanasiev
,
A. N.
Lagarkov
,
I. A.
Ryzhikov
,
A. K.
Sarychev
,
I. A.
Budashov
,
N. L.
Nechaeva
, and
I. N.
Kurochkin
,
J. Raman Spectrosc.
49
,
1145
(
2018
).
49.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
50.
A. P.
Sutton
and
R. W.
Balluffi
,
Interfaces in Crystalline Materials
(
Oxford  Clarendon Press
,
New York
,
1995
).
51.
R.
He
,
X.
Qian
,
Y.
Jie
, and
Z.
Zhu
,
Chem. Phys. Lett.
369
,
454
(
2003
).
52.
G. B.
Hoflund
,
Z. F.
Hazos
, and
G. N.
Salaita
,
Phys. Rev. B
62
,
11126
(
2000
).
53.
C. C.
Lin
and
C. W.
Chang
,
Biosens. Bioelectron.
51
,
297
(
2014
).
54.
J. F.
Arenas
,
M. S.
Woolley
,
I. L.
Tocon
,
J. C.
Otero
, and
J. I.
Marcos
,
J. Chem. Phys.
112
,
7669
(
2000
).
55.
S. K.
Saikin
,
R.
Olivares-Amaya
,
D.
Rappoport
,
M.
Stopa
, and
A.
Aspuru-Guzik
,
Phys. Chem. Chem. Phys.
11
,
9401
(
2009
).
56.
D. P.
Fromm
,
A.
Sundaramurthy
,
A.
Kinkhabwala
,
P. J.
Schuck
,
G. S.
Kino
, and
W. E.
Moerner
,
J. Chem. Phys.
124
,
061101
(
2006
).
57.
S. K.
Saikin
,
Y.
Chu
,
D.
Rappoport
,
K. B.
Crozier
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. Lett.
1
,
2740
(
2010
).
58.
A.
Otto
,
J. Raman Spectrosc.
36
,
497
(
2005
).
59.
P.
Kumar
,
R.
Khosla
,
M.
Soni
,
D.
Deva
, and
S. K.
Sharma
,
Sens. Actuators B
246
,
477
(
2017
).
60.
S.
Sharma
,
V.
Prakash
, and
S. K.
Mehta
,
Trends Anal. Chem.
86
,
155
(
2017
).
61.
X.
Zhang
,
Q.
Zhou
,
J.
Ni
,
Z.
Li
, and
Z.
Zhang
,
Physica E
44
,
460
(
2011
).
You do not currently have access to this content.