Gallium oxide is a promising semiconductor for its potential as a material in the field of power electronics. The effects of iridium impurities on undoped, Mg-doped, and Ca-doped gallium oxides were investigated with IR spectroscopy. In undoped and Ca-doped β-Ga2O3, IR peaks at 3313, 3450, and 3500 cm−1 are tentatively assigned to O–H bond-stretching modes of IrH complexes. Mg-, Ca-, and Fe-doped samples show an Ir4+ electronic transition feature at 5148 cm−1. By measuring the strength of this feature vs photoexcitation, the Ir3+/4+ donor level was determined to lie 2.2–2.3 eV below the conduction band minimum. Ga2O3:Mg also has a range of sidebands between 5100 and 5200 cm−1, attributed to IrMg pairs. Polarized IR measurements show that the 5248 cm−1 peak is anisotropic, weakest for light polarized along the c axis, consistent with Lenyk et al. [J. Appl. Phys. 125, 045703 (2019)].

1.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Phys. Status Solidi A
211
,
21
(
2014
).
2.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Víllora
,
K.
Shimamura
, and
S.
Yamakoshi
,
Appl. Phys. Express
5
,
035502
(
2012
).
3.
N.
Ueda
,
H.
Hosono
,
R.
Waseda
, and
H.
Kawazoe
,
Appl. Phys. Lett.
71
,
933
(
1997
).
4.
K.
Irmscher
,
Z.
Galazka
,
M.
Pietsch
,
R.
Uecker
, and
R.
Fornari
,
J. Appl. Phys.
110
,
063720
(
2011
).
5.
S.
Geller
,
J. Chem. Phys.
33
,
676
(
1960
).
6.
E. G.
Víllora
,
K.
Shimamura
,
Y.
Yoshikawa
,
K.
Aoki
, and
N.
Ichinose
,
J. Cryst. Growth
270
,
420
(
2004
).
7.
Z.
Galazka
,
R.
Uecker
,
D.
Klimm
,
K.
Irmscher
,
M.
Naumann
,
M.
Pietsch
,
A.
Kwasniewski
,
R.
Bertram
,
S.
Ganschow
, and
M.
Bickermann
,
ECS J. Solid State Sci. Technol.
6
,
Q3007
(
2017
).
8.
Z.
Galazka
,
K.
Irmscher
,
R.
Uecker
,
R.
Bertram
,
M.
Pietsch
,
A.
Kwasniewski
,
M.
Naumann
,
T.
Schulz
,
R.
Schewski
,
D.
Klimm
, and
M.
Bickermann
,
J. Cryst. Growth
404
,
184
(
2014
).
9.
T.
Onuma
,
S.
Fujioka
,
T.
Yamaguchi
,
M.
Higashiwaki
,
K.
Sasaki
,
T.
Masui
, and
T.
Honda
,
Appl. Phys. Lett.
103
,
041910
(
2013
).
10.
B. E.
Kananen
,
L. E.
Halliburton
,
E. M.
Scherrer
,
K. T.
Stevens
,
G. K.
Foundos
,
K. B.
Chang
, and
N. C.
Giles
,
Appl. Phys. Lett.
111
,
072102
(
2017
).
11.
M. E.
Ingebrigtsen
,
J. B.
Varley
,
A. Yu.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
, and
L.
Vines
,
Appl. Phys. Lett.
112
,
042104
(
2018
).
12.
J. R.
Ritter
,
J.
Huso
,
P. T.
Dickens
,
J. B.
Varley
,
K. G.
Lynn
, and
M. D.
McCluskey
,
Appl. Phys. Lett.
113
,
052101
(
2018
).
13.
J. R.
Ritter
,
K. G.
Lynn
, and
M. D.
McCluskey
,
Proc. SPIE
10919
,
109190Z
(
2019
).
14.
M. D.
McCluskey
,
S. J.
Jokela
,
K. K.
Zhuravlev
,
P. J.
Simpson
, and
K. G.
Lynn
,
Appl. Phys. Lett.
81
,
3807
(
2002
).
15.
W.
Ulrici
,
M.
Czupalla
, and
M.
Seifert
,
Phys. Status Solidi B
210
,
551
(
1998
).
16.
P.
Weiser
,
M.
Stavola
,
W. B.
Fowler
,
Y.
Qin
, and
S.
Pearton
,
Appl. Phys. Lett.
112
,
232104
(
2018
).
17.
O. F.
Schirmer
,
A.
Forster
,
H.
Hesse
,
M.
Wohlecke
, and
S.
Kapphan
,
J. Phys. C Solid State Phys.
17
,
1321
(
1984
).
18.
B.
Andlauer
,
J.
Schneider
, and
W.
Tolksdorf
,
Phys. Status Solidi B
73
,
533
(
1976
).
19.
T. A.
Keiderling
,
P. J.
Stephens
,
S. B.
Piepho
,
J. L.
Slater
, and
P. N.
Schatz
,
Chem. Phys.
11
,
343
(
1975
).
20.
C. A.
Lenyk
,
N. C.
Giles
,
E. M.
Scherrer
,
B. E.
Kananen
,
L. E.
Halliburton
,
K. T.
Stevens
,
G. K.
Foundos
,
J. D.
Blevins
,
D. L.
Dorsey
, and
S.
Mou
,
J. Appl. Phys.
125
,
045703
(
2019
).

Supplementary Material

You do not currently have access to this content.