Nanoimprinting followed by metal deposition is a low-cost, high-throughput, and highly reproducible process for the fabrication of large-size plasmonic substrates required for commercial products. However, the plasmonic substrates prepared by the process usually have very broad surface plasmon resonances, which cannot be well reproduced by numerical simulations. The poor agreement between experiments and calculations has prevented the detailed analysis of the field enhancement behavior and the improvement of the performance as plasmonic substrates. In this work, we demonstrate that large-area plasmonic substrates with sharp surface plasmon resonances, which can be well reproduced by numerical simulations, are produced by sputter-deposition of gold (Au) on a commercially available nanoimprinted substrate. The good agreement between experiments and simulations allow us to identify the locations and field distributions of the hot spots. The angle dependence of specular reflectance and diffuse reflectance measurements in combination with numerical simulations reveal that a dipolelike bright mode and a higher-order dark mode exist at gaps between Au nanorods. Finally, we demonstrate the application of the developed plasmonic substrates for surface-enhanced fluorescence in sandwich immunoassays for the detection of influenza virus nucleoprotein. We show that the sharp resonance and the capability of precise tuning of the resonance wavelength significantly enhance the luminescence signal.

1.
S.
Lal
,
S.
Link
, and
N. J.
Halas
,
Nanoscience and Technology
(
World Scientific
,
2009
), pp.
213
220
.
2.
M.
Li
,
S. K.
Cushing
, and
N.
Wu
,
Analyst
140
,
386
(
2015
).
3.
C. L.
Haynes
and
R. P.
Van Duyne
,
J. Phys. Chem. B
107
,
7426
(
2003
).
4.
Y.
Huang
,
X.
Zhang
,
J.
Li
,
L.
Ma
, and
Z.
Zhang
,
J. Mater. Chem. C
5
,
6079
(
2017
).
5.
Y.
Huang
,
X.
Zhang
,
E.
Ringe
,
L.
Ma
,
X.
Zhai
,
L.
Wang
, and
Z.
Zhang
,
Nanoscale
10
,
4267
(
2018
).
6.
Y.
Huang
,
X.
Zhang
,
E.
Ringe
,
M.
Hou
,
L.
Ma
, and
Z.
Zhang
,
Sci. Rep.
6
,
23159
(
2016
).
7.
T.
Siegfried
,
Y.
Ekinci
,
O. J. F.
Martin
, and
H.
Sigg
,
Nano Lett.
13
,
5449
(
2013
).
8.
A.
Kinkhabwala
,
Z.
Yu
,
S.
Fan
,
Y.
Avlasevich
,
K.
Müllen
, and
W. E.
Moerner
,
Nat. Photonics
3
,
654
(
2009
).
9.
R. M.
Bakker
,
H.-K.
Yuan
,
Z.
Liu
,
V. P.
Drachev
,
A. V.
Kildishev
,
V. M.
Shalaev
,
R. H.
Pedersen
,
S.
Gresillon
, and
A.
Boltasseva
,
Appl. Phys. Lett.
92
,
043101
(
2008
).
10.
Z.-J.
Yang
,
Z.-S.
Zhang
,
L.-H.
Zhang
,
Q.-Q.
Li
,
Z.-H.
Hao
, and
Q.-Q.
Wang
,
Opt. Lett.
36
,
1542
(
2011
).
11.
M.
Kawasaki
and
S.
Mine
,
J. Phys. Chem. B
109
,
17254
(
2005
).
12.
J. R.
Lakowicz
,
Anal. Biochem.
298
,
1
(
2001
).
13.
M.
Shioi
,
H.
Jans
,
K.
Lodewijks
,
P.
Van Dorpe
,
L.
Lagae
, and
T.
Kawamura
,
Appl. Phys. Lett.
104
,
243102
(
2014
).
14.
J. S.
Biteen
,
N. S.
Lewis
,
H. A.
Atwater
,
H.
Mertens
, and
A.
Polman
,
Appl. Phys. Lett.
88
,
131109
(
2006
).
15.
P. P.
Pompa
,
L.
Martiradonna
,
A.
Della Torre
,
F.
Della Sala
,
L.
Manna
,
M.
De Vittorio
,
F.
Calabi
,
R.
Cingolani
, and
R.
Rinaldi
,
Nat. Nanotechnol.
1
,
126
(
2006
).
16.
A. G.
Brolo
,
S. C.
Kwok
,
M. D.
Cooper
,
M. G.
Moffitt
,
C. W.
Wang
,
R.
Gordon
,
J.
Riordon
, and
K. L.
Kavanagh
,
J. Phys. Chem. B
110
,
8307
(
2006
).
17.
T. R.
Jensen
,
M. D.
Malinsky
,
C. L.
Haynes
, and
R. P.
Van Duyne
,
J. Phys. Chem. B
104
,
10549
(
2000
).
18.
E. M.
Hicks
,
X.
Zhang
,
S.
Zou
,
O.
Lyandres
,
K. G.
Spears
,
G. C.
Schatz
, and
R. P.
Van Duyne
,
J. Phys. Chem. B
109
,
22351
(
2005
).
19.
M.
Shioi
,
K.
Lodewijks
,
L.
Lagae
,
T.
Kawamura
, and
P.
Van Dorpe
,
Appl. Phys. Lett.
97
,
163106
(
2010
).
20.
J. P.
Camden
,
J. A.
Dieringer
,
J.
Zhao
, and
R. P.
Van Duyne
,
Acc. Chem. Res.
41
,
1653
(
2008
).
21.
Y.
Mochizuki
,
M.
Fujii
,
S.
Hayashi
,
T.
Tsuruoka
, and
K.
Akamatsu
,
J. Appl. Phys.
106
,
013517
(
2009
).
22.
W.-C.
Lin
,
L.-S.
Liao
,
Y.-H.
Chen
,
H.-C.
Chang
,
D. P.
Tsai
, and
H.-P.
Chiang
,
Plasmonics
6
,
201
(
2011
).
23.
C.
Farcǎu
and
S.
Aştilean
,
Appl. Phys. Lett.
95
,
193110
(
2009
).
24.
H.
Sugimoto
,
S.
Yashima
,
K.
Furuta
,
A.
Inoue
, and
M.
Fujii
,
Appl. Phys. Lett.
108
,
241103
(
2016
).
25.
A.
Inoue
,
H.
Sugimoto
, and
M.
Fujii
,
J. Phys. Chem. C
121
,
11609
(
2017
).
26.
S. Y.
Chou
,
J. Vac. Sci. Technol. B
14
,
4129
(
1996
).
27.
28.
W.-D.
Li
,
F.
Ding
,
J.
Hu
, and
S. Y.
Chou
,
Opt. Express
19
,
3925
(
2011
).
29.
R.
Alvarez-Puebla
,
B.
Cui
,
J. P.
Bravo-Vasquez
,
T.
Veres
, and
H.
Fenniri
,
J. Phys. Chem. C
111
,
6720
(
2007
).
30.
C.-C.
Yu
,
Y.-C.
Tseng
,
P.-Y.
Su
,
K.-T.
Lin
,
C.-C.
Shao
,
S.-Y.
Chou
,
Y.-T.
Yen
, and
H.-L.
Chen
,
Nanoscale
7
,
3985
(
2015
).
31.
A. M.
Lopatynskyi
,
V. K.
Lytvyn
,
V. I.
Nazarenko
,
L. J.
Guo
,
B. D.
Lucas
, and
V. I.
Chegel
,
Nanoscale Res. Lett.
10
,
99
(
2015
).
32.
R. D.
Nagel
,
S.
Filser
,
T.
Zhang
,
A.
Manzi
,
K.
Schönleber
,
J.
Lindsly
,
J.
Zimmermann
,
T. L.
Maier
,
G.
Scarpa
,
K.
Krischer
, and
P.
Lugli
,
J. Appl. Phys.
121
,
084305
(
2017
).
33.
T.
Lee
,
S.
Jung
,
S.
Kwon
,
W.
Kim
,
J.
Park
,
H.
Lim
, and
J.
Lee
,
Sensors
19
,
1046
(
2019
).
34.
T.
Matsushita
,
T.
Nishikawa
,
H.
Yamashita
,
R.
Hasui
,
S.
Fujita
, and
Y.
Okuno
,
Jpn. J. Appl. Phys.
47
,
7420
(
2008
).
35.
S.
Zhu
,
H.
Li
,
M.
Yang
, and
S. W.
Pang
,
Nanotechnology
27
,
295101
(
2016
).
36.
G.
Barbillon
,
Micromachines
3
,
21
(
2012
).
37.
H.
Yanagawa
,
A.
Inoue
,
H.
Sugimoto
,
M.
Shioi
, and
M.
Fujii
,
J. Appl. Phys.
122
,
223101
(
2017
).
38.
J. M.
Lackner
,
W.
Waldhauser
,
A.
Alamanou
,
C.
Teichert
,
F.
Schmied
,
L.
Major
, and
B.
Major
,
Bull. Pol. Acad. Sci. Tech.
58
,
281
(
2010
).
39.
S. L.
Kleinman
,
B.
Sharma
,
M. G.
Blaber
,
A.-I.
Henry
,
N.
Valley
,
R. G.
Freeman
,
M. J.
Natan
,
G. C.
Schatz
, and
R. P.
Van Duyne
,
J. Am. Chem. Soc.
135
,
301
(
2013
).
40.
P. B.
Johnson
, and
R. W.
Christy
,
Phys. Rev.
6
(
12
),
4370
4379
(
1972
).
41.
J. P.
Litz
,
J. P.
Camden
, and
D. J.
Masiello
,
J. Phys. Chem. Lett.
2
,
1695
(
2011
).
42.
M. D.
Doherty
,
A.
Murphy
,
R. J.
Pollard
, and
P.
Dawson
,
Phys. Rev. X 
3
,
011001
(
2013
).
43.
D. P.
Lyvers
,
J.-M.
Moon
,
A. V.
Kildishev
,
V. M.
Shalaev
, and
A.
Wei
,
ACS Nano
2
,
2569
(
2008
).
44.
N. G.
Bastús
,
J.
Piella
, and
V.
Puntes
,
Langmuir
32
,
290
(
2016
).
45.
T. K.
Hakala
,
H. T.
Rekola
,
A. I.
Väkeväinen
,
J.-P.
Martikainen
,
M.
Nečada
,
A. J.
Moilanen
, and
P.
Törmä
,
Nat. Commun.
8
,
13687
(
2017
).
46.
G.
Lozano
,
D. J.
Louwers
,
S. R.
Rodríguez
,
S.
Murai
,
O. T.
Jansen
,
M. A.
Verschuuren
, and
J.
Gómez Rivas
,
Light Sci. Appl.
2
,
e66
(
2013
).
47.
R.
Guo
,
S.
Derom
,
A. I.
Väkeväinen
,
R. J. A.
van Dijk-Moes
,
P.
Liljeroth
,
D.
Vanmaekelbergh
, and
P.
Törmä
,
Opt. Express
23
,
28206
(
2015
).
48.
S. R. K.
Rodriguez
,
A.
Abass
,
B.
Maes
,
O. T. A.
Janssen
,
G.
Vecchi
, and
J.
Gómez Rivas
,
Phys. Rev. X 
1
,
021019
(
2011
).

Supplementary Material

You do not currently have access to this content.