Atomically-abrupt interfaces in transition metal oxide (TMO) heterostructures could host a variety of exotic condensed matter phases that may not be found in the bulk materials at equilibrium. A critical step in the development of such atomically-sharp interfaces is the deposition of atomically-smooth TMO thin films. Optimized deposition conditions exist for the growth of perovskite oxides. However, the deposition of rutile oxides, such as VO2, with atomic-layer precision has been challenging. In this work, we used pulsed laser deposition to grow atomically-smooth VO2 thin films on rutile TiO2 (101) substrates. We show that an optimal substrate preparation procedure followed by the deposition of VO2 films at a temperature conducive for step-flow growth mode is essential for achieving atomically-smooth VO2 films. The films deposited at optimal substrate temperatures show a step and terrace structure of the underlying TiO2 substrate. At lower deposition temperatures, there is a transition to a mixed growth mode comprised of island growth and layer-by-layer growth modes. VO2 films deposited at optimal substrate temperatures undergo a sharp metal to insulator transition, similar to that observed in bulk VO2, but at a transition temperature of 325K with 103 times increase in resistance.

1.
M.
Kawasaki
,
K.
Takahashi
,
T.
Maeda
,
R.
Tsuchiya
,
M.
Shinohara
,
O.
Ishiyama
,
T.
Yonezawa
,
M.
Yoshimoto
, and
H.
Koinuma
,
Science
266
,
1540
(
1994
).
2.
A.
Ohtomo
and
H.
Hwang
,
Nature
427
,
423
(
2004
).
3.
N.
Reyren
,
S.
Thiel
,
A.
Caviglia
,
L. F.
Kourkoutis
,
G.
Hammerl
,
C.
Richter
,
C.
Schneider
,
T.
Kopp
,
A.-S.
Rüetschi
,
D.
Jaccard
et al.,
Science
317
,
1196
(
2007
).
4.
A.
Brinkman
,
M.
Huijben
,
M.
Van Zalk
,
J.
Huijben
,
U.
Zeitler
,
J.
Maan
,
W. G.
van der Wiel
,
G.
Rijnders
,
D. H.
Blank
, and
H.
Hilgenkamp
,
Nat. Mater.
6
,
493
(
2007
).
5.
J.
Mannhart
and
D.
Schlom
,
Science
327
,
1607
(
2010
).
6.
S.
Thiel
,
G.
Hammerl
,
A.
Schmehl
,
C.
Schneider
, and
J.
Mannhart
,
Science
313
,
1942
(
2006
).
7.
M.
Salluzzo
,
J.
Cezar
,
N.
Brookes
,
V.
Bisogni
,
G.
De Luca
,
C.
Richter
,
S.
Thiel
,
J.
Mannhart
,
M.
Huijben
,
A.
Brinkman
et al.,
Phys. Rev. Lett.
102
,
166804
(
2009
).
8.
J.
Chakhalian
,
J.
Freeland
,
H.-U.
Habermeier
,
G.
Cristiani
,
G.
Khaliullin
,
M.
Van Veenendaal
, and
B.
Keimer
,
Science
318
,
1114
(
2007
).
9.
K.
Shibuya
,
M.
Kawasaki
, and
Y.
Tokura
,
Phys. Rev. B
82
,
205118
(
2010
).
11.
V.
Pardo
and
W. E.
Pickett
,
Phys. Rev. Lett.
102
,
166803
(
2009
).
12.
M. M.
Qazilbash
,
M.
Brehm
,
B.-G.
Chae
,
P.-C.
Ho
,
G. O.
Andreev
,
B.-J.
Kim
,
S. J.
Yun
,
A.
Balatsky
,
M.
Maple
,
F.
Keilmann
et al.,
Science
318
,
1750
(
2007
).
13.
M.
Haverkort
,
Z.
Hu
,
A.
Tanaka
,
W.
Reichelt
,
S.
Streltsov
,
M.
Korotin
,
V.
Anisimov
,
H.
Hsieh
,
H.-J.
Lin
,
C.
Chen
et al.,
Phys. Rev. Lett.
95
,
196404
(
2005
).
14.
C.
Berglund
and
H.
Guggenheim
,
Phys. Rev.
185
,
1022
(
1969
).
15.
C.
Berglund
and
A.
Jayaraman
,
Phys. Rev.
185
,
1034
(
1969
).
16.
J. B.
Goodenough
,
J. Solid State Chem.
3
,
490
(
1971
).
17.
18.
J.
Laverock
,
L.
Piper
,
A.
Preston
,
B.
Chen
,
J.
McNulty
,
K.
Smith
,
S.
Kittiwatanakul
,
J.
Lu
,
S.
Wolf
,
P.-A.
Glans
et al.,
Phys. Rev. B
85
,
081104
(
2012
).
19.
B.
Lazarovits
,
K.
Kim
,
K.
Haule
, and
G.
Kotliar
,
Phys. Rev. B
81
,
115117
(
2010
).
20.
Y.
Muraoka
,
Y.
Ueda
, and
Z.
Hiroi
,
J. Phys. Chem. Solids
63
,
965
(
2002
).
21.
M.
Nakano
,
K.
Shibuya
,
D.
Okuyama
,
T.
Hatano
,
S.
Ono
,
M.
Kawasaki
,
Y.
Iwasa
, and
Y.
Tokura
,
Nature
487
,
459
(
2012
).
22.
K.
Okazaki
,
H.
Wadati
,
A.
Fujimori
,
M.
Onoda
,
Y.
Muraoka
, and
Z.
Hiroi
,
Phys. Rev. B
69
,
165104
(
2004
).
23.
D.
Newns
,
J.
Misewich
,
C.
Tsuei
,
A.
Gupta
,
B.
Scott
, and
A.
Schrott
,
Appl. Phys. Lett.
73
,
780
(
1998
).
24.
T.
Yajima
,
T.
Nishimura
, and
A.
Toriumi
,
Nat. Commun.
6
,
10104
(
2015
).
25.
Y.
Muraoka
and
Z.
Hiroi
,
Appl. Phys. Lett.
80
,
583
(
2002
).
26.
N. B.
Aetukuri
,
A. X.
Gray
,
M.
Drouard
,
M.
Cossale
,
L.
Gao
,
A. H.
Reid
,
R.
Kukreja
,
H.
Ohldag
,
C. A.
Jenkins
,
E.
Arenholz
et al.,
Nat. Phys.
9
,
661
(
2013
).
27.
J.
Jeong
,
N.
Aetukuri
,
T.
Graf
,
T. D.
Schladt
,
M. G.
Samant
, and
S. S.
Parkin
,
Science
339
,
1402
(
2013
).
28.
M.
Ramamoorthy
,
D.
Vanderbilt
, and
R.
King-Smith
,
Phys. Rev. B
49
,
16721
(
1994
).
29.
30.
N. P.
Aetukuri
, Ph.D. thesis (Stanford University, 2013).
31.
J.
Li
and
J.
Dho
,
J. Cryst. Growth
404
,
84
(
2014
).
32.
J.
Jeong
,
N. B.
Aetukuri
,
D.
Passarello
,
S. D.
Conradson
,
M. G.
Samant
, and
S. S.
Parkin
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
1013
(
2015
).
33.
K.
Martens
,
N.
Aetukuri
,
J.
Jeong
,
M. G.
Samant
, and
S. S.
Parkin
,
Appl. Phys. Lett.
104
,
081918
(
2014
).
34.
G. H.
Gilmer
and
M. H.
Grabow
,
JOM
39
,
19
(
1987
).
35.
W.
Hong
,
H. N.
Lee
,
M.
Yoon
,
H. M.
Christen
,
D. H.
Lowndes
,
Z.
Suo
, and
Z.
Zhang
,
Phys. Rev. Lett.
95
,
095501
(
2005
).
36.
G.
Koster
,
G. J.
Rijnders
,
D. H.
Blank
, and
H.
Rogalla
,
Appl. Phys. Lett.
74
,
3729
(
1999
).
37.
A.
Ichimiya
and
P. I.
Cohen
,
Reflection High-Energy Electron Diffraction
(
Cambridge University Press
,
Cambridge
,
2004
).
38.
K.
Kawatani
,
T.
Kanki
, and
H.
Tanaka
,
Phys. Rev. B
90
,
054203
(
2014
).
39.
T.
Cai
,
X.
Li
,
F.
Wang
,
S.
Ju
,
J.
Feng
, and
C.-D.
Gong
,
Nano Lett.
15
,
6434
(
2015
).

Supplementary Material

You do not currently have access to this content.