We use first-principles electronic structure methods to calculate the electronic thermoelectric properties (i.e., due to electronic transport only) of single-crystalline bulk n-type silicon-germanium alloys vs Ge composition, temperature, doping concentration, and strain. We find excellent agreement to available experiments for the resistivity, mobility, and Seebeck coefficient. These results are combined with the experimental lattice thermal conductivity to calculate the thermoelectric figure of merit ZT, finding very good agreement with experiments. We predict that 3% tensile hydrostatic strain enhances the n-type ZT by 50% at carrier concentrations of n=1020cm3 and a temperature of T=1200K. These enhancements occur at different alloy compositions due to different effects: at 50% Ge composition, the enhancements are achieved by a strain induced decrease in the Lorenz number, while the power factor remains unchanged. These characteristics are important for highly doped and high temperature materials, in which up to 50% of the heat is carried by electrons. At 70% Ge, the increase in ZT is due to a large increase in the electrical conductivity produced by populating the high mobility Γ conduction band valley, lowered in energy by strain.

1.
A.
Ioffe
,
Semiconductor Thermoelements and Thermoelectric Cooling
(
Infosearch
,
London
,
1957
).
2.
J.
Mao
,
Z.
Liu
,
J.
Zhou
,
H.
Zhu
,
Q.
Zhang
,
G.
Chen
, and
Z.
Ren
,
Adv. Phys.
67
,
69
(
2018
).
3.
Y.
Pei
,
X.
Shi
,
A.
LaLonde
,
H.
Wang
,
L.
Chen
, and
G.
Snyder
,
Nature
473
,
66
(
2011
).
4.
W.
Liu
,
X.
Tan
,
K.
Yin
,
H.
Liu
,
X.
Tang
,
J.
Shi
,
Q.
Zhang
, and
C.
Uher
,
Phys. Rev. Lett.
108
,
166601
(
2012
).
5.
M.
Otani
,
N. D.
Lowhorn
,
P. K.
Schenck
,
W.
Wong-Ng
,
M. L.
Green
,
K.
Itaka
, and
H.
Koinuma
,
Appl. Phys. Lett.
91
,
132102
(
2007
).
6.
S.
Wang
,
Z.
Wang
,
W.
Setyawan
,
N.
Mingo
, and
S.
Curtarolo
,
Phys. Rev. X
1
,
021012
(
2011
).
7.
T. J.
Scheidemantel
,
C.
Ambrosch-Draxl
,
T.
Thonhauser
,
J. V.
Badding
, and
J. O.
Sofo
,
Phys. Rev. B
68
,
125210
(
2003
).
8.
D. J.
Singh
,
Phys. Rev. B
81
,
195217
(
2010
).
9.
T.
Sohier
,
M.
Calandra
,
C.-H.
Park
,
N.
Bonini
,
N.
Marzari
, and
F.
Mauri
,
Phys. Rev. B
90
,
125414
(
2014
).
10.
M.
Fiorentini
and
N.
Bonini
,
Phys. Rev. B
94
,
085204
(
2016
).
11.
J.
Ma
,
Y.
Chen
, and
W.
Li
,
Phys. Rev. B
97
,
205207
(
2018
).
12.
S.
Poncé
,
E. R.
Margine
, and
F.
Giustino
,
Phys. Rev. B
97
,
121201
(
2018
).
13.
Q.
Song
,
T.-H.
Liu
,
J.
Zhou
,
Z.
Ding
, and
G.
Chen
,
Mater. Today Phys.
2
,
69
(
2017
).
14.
Z.
Wang
,
S.
Wang
,
S.
Obukhov
,
N.
Vast
,
J.
Sjakste
,
V.
Tyuterev
, and
N.
Mingo
,
Phys. Rev. B
83
,
205208
(
2011
).
15.
J.
Cao
,
J.
Querales-Flores
,
A.
Murphy
,
S.
Fahy
, and
I.
Savić
,
Phys. Rev. B
98
,
205202
(
2018
).
16.
F.
Murphy-Armando
and
S.
Fahy
,
Phys. Rev. Lett.
97
,
096606
(
2006
).
17.
S.
Joyce
,
F.
Murphy-Armando
, and
S.
Fahy
,
Phys. Rev. B
75
,
155201
(
2007
).
18.
F.
Murphy-Armando
and
S.
Fahy
,
Phys. Rev. B
78
,
035202
(
2008
).
19.
F.
Murphy-Armando
and
S.
Fahy
,
J. Appl. Phys.
110
,
123706
(
2011
).
20.
F.
Murphy-Armando
and
S.
Fahy
,
J. Appl. Phys.
109
,
113703
(
2011
).
21.
N.
Ashcroft
and
N.
Mermin
,
Solid State Physics
(
Cengage Learning
,
2011
).
22.
D.
Rideau
,
M.
Feraille
,
L.
Ciampolini
,
M.
Minondo
,
C.
Tavernier
,
H.
Jaouen
, and
A.
Ghetti
,
Phys. Rev. B
74
,
195208
(
2006
).
23.
F.
Murphy-Armando
and
S.
Fahy
,
Phys. Rev. B
86
,
079903
(
2012
).
24.
K.
Berland
and
C.
Person
,
Comput. Mater. Sci.
134
,
17
(
2017
).
25.
K.
Berland
and
C.
Person
,
J. Appl. Phys.
123
,
205703
(
2018
).
26.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
28.
A. J.
Minnich
,
H.
Lee
,
X.
Wang
,
G.
Joshi
,
M.
Dresselhaus
,
Z.
Ren
,
G.
Chen
, and
D.
Vashaee
,
Phys. Rev. B
80
,
155327
(
2009
).
29.
P. B.
Allen
and
V.
Heine
,
J. Phys. C: Solid State Phys.
9
,
2305
(
1976
).
30.
P. B.
Allen
and
M.
Cardona
,
Phys. Rev. B
23
,
1495
(
1981
).
31.
P. B.
Allen
and
M.
Cardona
,
Phys. Rev. B
27
,
4760
(
1983
).
32.
S.
Poncé
,
Y.
Gillet
,
J.
Janssen
,
A.
Marini
,
M.
Verstraete
, and
X.
Gonze
,
J. Chem. Phys.
143
,
102813
(
2015
).
33.
S.
Poncé
,
G.
Antonius
,
P.
Boulanger
,
E.
Cannuccia
,
A.
Marini
,
M.
Coté
, and
X.
Gonze
,
Comput. Mater. Sci.
83
,
341
(
2014
).
34.
E. G. S.
Paige
, The Electrical Conductivity of Germanium, Progress in Semiconductors, Vol. 8 (
Heywood
,
London
,
1964
).
35.
J.
Sjakste
,
N.
Vast
,
H.
Jani
,
S.
Obukhov
, and
V.
Tyuterev
,
Phys. Status Solidi B
250
,
716
(
2013
).
36.
M.
Fischetti
and
S.
Laux
,
J. Appl. Phys.
80
,
2234
(
1996
).
37.
D.
Chattopadhyay
and
H.
Queisser
,
Rev. Mod. Phys.
53
,
745
(
1981
).
38.
R.
Barrie
,
Proc. Phys. Soc. London Sect. B
69
,
553
(
1956
).
39.
J. P.
Dismukes
,
L.
Ekstrom
,
E. F.
Steigmeier
,
I.
Kudman
, and
D. S.
Beers
,
J. Appl. Phys.
35
,
2899
(
1964
).
41.
V.
Fistul
,
M. I.
Iglitsyn
, and
E. M.
Omelyanovskii
,
Sov. Phys. Solid State
4
,
784
(
1962
), see http://www.ioffe.ru/SVA/NSM/Semicond/Ge/hall.html.
42.
W.
Patrick
,
Solid-State Electron.
9
,
203
(
1966
).
43.
F.
Morin
and
J.
Maita
,
Phys. Rev.
96
,
28
(
1954
).
44.
I.
Granacher
,
J. Phys. Chem. Solids
24
,
231
(
1967
).
45.
M.
Glicksman
,
Phys. Rev.
111
,
125
(
1958
).
46.
J. B.
Krieger
and
T.
Meeks
,
Phys. Rev. B
8
,
2780
(
1973
).
47.
A. A.
Barlian
,
W.-T.
Park
,
J. R.
Mallon
, Jr.,
A. J.
Rastegar
, and
B. L.
Pruitt
,
Proc. IEEE
97
,
513
(
2009
).
48.
F.
Murphy-Armando
and
S.
Fahy
,
Phys. Rev. B
86
,
035205
(
2012
).
49.
N. F.
Hinsche
,
I.
Mertig
, and
P.
Zahn
,
J. Phys.: Condens. Matter
24
,
275501
(
2012
).
50.
N. F.
Hinsche
,
I.
Mertig
, and
P.
Zahn
,
J. Phys.: Condens. Matter
23
,
295502
(
2011
).
51.
P.
Moontragoon
,
P.
Pengpit
,
T.
Burinprakhon
,
S.
Maensiri
,
N.
Vukmirovic
,
Z.
Ikonic
, and
P.
Harrison
,
J. Non-Cryst. Solids
358
,
2096
(
2012
).
52.
S.
Wirths
,
D.
Buca
, and
S.
Mantl
,
Progr. Cryst. Growth Charact. Mater.
62
,
1
(
2016
).
You do not currently have access to this content.