The scaling of reaction yields in light ion fusion to low reaction energies is important for our understanding of stellar fuel chains and the development of future energy technologies. Experiments become progressively more challenging at lower reaction energies due to the exponential drop of fusion cross sections below the Coulomb barrier. We report on experiments where deuterium-deuterium (D-D) fusion reactions are studied in a pulsed plasma in the glow discharge regime using a benchtop apparatus. We model plasma conditions using particle-in-cell codes. Advantages of this approach are relatively high peak ion currents and current densities (0.1 to several A/cm2) that can be applied to metal wire cathodes for several days. We detect neutrons from D-D reactions with scintillator-based detectors. For palladium targets, we find neutron yields as a function of cathode voltage that are over 100 times higher than yields expected for bare nuclei fusion at ion energies below 2 keV (center of mass frame). A possible explanation is a correction to the ion energy due to an electron screening potential of 1000 ± 250 eV, which increases the probability for tunneling through the repulsive Coulomb barrier. Our compact, robust setup enables parametric studies of this effect at relatively low reaction energies.

1.
C. E.
Rolfs
and
W.
Rodney
,
Cauldrons of the Cosmos
(
University of Chicago Press
,
Chicago
,
1988
).
2.
D.
Casey
 et al.,
Nat. Phys.
13
,
1227
(
2017
).
3.
Y.
Wu
and
A.
Pálffy
,
Astrophys. J.
838
,
55
(
2017
).
4.
H. S.
Bosch
and
G. M.
Hale
,
Nucl. Fusion
32
,
611
(
1992
).
5.
K.
Czerski
,
A.
Huke
,
A.
Biller
,
P.
Heide
,
M.
Hoeft
, and
G.
Ruprecht
,
Europhys. Lett.
54
,
449
(
2001
);
K.
Czerski
,
D.
Weissbach
,
A.
Kilic
,
G.
Ruprecht
,
A.
Huke
,
M.
Kaczmarski
,
N.
Targosz-Ślęczka
, and
K.
Maass
,
Europhys. Lett.
113
,
22001
(
2016
).
6.
F.
Raiola
 et al,
Eur. Phys. J. A
13
,
377
(
2002
).
7.
J.
Kasagi
,
H.
Yuki
,
T.
Baba
,
T.
Noda
,
T.
Ohtsuki
, and
A. G.
Lipson
,
J. Phys. Soc. Jpn.
71
,
2881
(
2002
).
8.
A. G.
Lipson
,
A. S.
Rusetski
,
A. B.
Karabut
, and
G.
Miley
,
J. Exp. Theor. Phys.
100
,
1175
(
2005
).
9.
A.
Huke
,
K.
Czerski
,
P.
Heide
,
G.
Ruprecht
,
N.
Targosz
, and
W.
Zebrowski
,
Phys. Rev. C
78
,
015803
(
2008
).
10.
H. J.
Assenbaum
,
K.
Langanke
, and
C.
Rolfs
,
Z. Phys. A At. Nucl.
327
,
461
(
1987
).
11.
S.
Ichimaru
,
Rev. Mod. Phys.
65
,
252
(
1993
).
13.
A.
Tumino
 et al,
J. Phys. Conf. Ser.
665
,
012009
(
2016
).
14.
M.
Wiescher
,
F.
Käppeler
, and
K.
Langanke
,
Annu. Rev. Astron. Astrophys.
50
,
165
(
2012
).
15.
V. M.
Bystritsky
 et al,
Nucl. Instrum. Methods Phys. Res. Sect. A
761
,
42
(
2014
).
16.
T.
Claytor
,
D.
Jackson
, and
D.
Tuggle
,
Tritium Production from a Low Voltage Deuterium Discharge on Palladium and Other Metals
, Tech. Rep. (
Los Alamos National Lab
,
1995
).
17.
C. P.
Berlinguette
,
Y.-M.
Chi1ang
,
J. N.
Munday
,
T.
Schenkel
,
D. K.
Fork
, and
R.
Koningstein
,
Nature
570
,
45
(
2019
).
18.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instr. Methods Phys. Res. Sect. B Beams Interact. Mater. At.
268
,
1818
(
2010
).
19.
P. R.
Goncharov
,
At. Data Nucl. Data Tables
120
,
121
(
2018
).
20.
A.
Friedman
 et al,
IEEE Trans. Plasma Sci.
42
,
1321
(
2014
).
21.
Tech-X Corporation
, see https://www.txcorp.com/vsim for information on the VSim multi-physics simulations software tool; accessed 29 August 2018.
22.
E. G.
Thorsteinsson
and
J. T.
Gudmundsson
,
Plasma Sources Sci. Technol.
19
,
015001
(
2010
).
23.
B. G.
Lindsay
and
R. F.
Stebbings
,
J. Geophys. Res. Space Phys.
110
,
A12213
(
2005
).
24.
A. V.
Phelps
,
J. Phys. Chem. Ref. Data
19
,
653
(
1990
).
25.
J.-S.
Yoon
 et al,
J. Phys. Chem. Ref. Data
37
(
2
),
913
931
(
2008
).
26.
R. K.
Janev
,
W. D.
Langer
, and
E.
Douglass
, Jr.
,
Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients
(
Springer Science & Business Media, V 4
,
1987
).
27.
C.
Gorse
,
R.
Celiberto
,
M.
Cacciatore
,
A.
Lagana
, and
M.
Capitelli
,
Chem. Phys.
161
,
211
(
1992
).
28.
H. C.
Straub
,
P.
Renault
,
B. G.
Lindsay
,
K. A.
Smith
, and
R. F.
Stebbings
,
Phys. Rev. A
54
,
2146
(
1996
).
29.
J. M.
Wadehra
and
J. N.
Bardsley
,
Phys. Rev. Lett.
41
,
1795
(
1978
).
30.
S. F.
Biagi
, Fortran program, MAGBOLTZ, versions 8.9 and after (2012) Plasma Data Exchange Project, see https://fr.lxcat.net/cache/5b980fe8e8834.
31.
H.
Tawara
,
Y.
Itikawa
,
H.
Nishimura
, and
M.
Yoshino
,
J. Phys. Chem. Ref. Data
19
,
617
(
1990
).
32.
P. L.
Gertitschke
and
W.
Domcke
,
Phys. Rev. A
47
,
1031
(
1993
).
34.
L.
Marques
,
J.
Jolly
, and
L. L.
Alves
,
J. Appl. Phys.
15
,
063305
(
2007
).
35.
J.
Carlsson
,
A.
Khrabrov
,
I.
Kaganovich
,
T.
Sommerer
, and
D.
Keating
,
Plasma Sources Sci. Technol.
26
,
014003
(
2017
).
36.
G. F.
Knoll
,
Radiation Detection and Measurement
, 3rd ed. (
Wiley
,
New York
,
2002
).
37.
See https://eljentechnology.com/products/liquid-scintillators/ej-301-ej-309 for information on liquid scintillators and neutron detectors.
38.
Q.
Ji
,
C.-J.
Lin
,
C.
Tindall
,
M.
Garcia-Sciveres
,
T.
Schenkel
, and
B. A.
Ludewigt
,
Rev. Sci. Instrum.
88
,
056105
(
2017
).
39.
A. C.
Kaplan
,
M.
Flaska
,
A.
Enqvist
,
J. L.
Dolan
, and
S. A.
Pozzi
,
Nucl. Instrum. Methods A
729
,
463
(
2013
).
40.
D.
Zhou
,
O.
Bousquet
,
T.
Lal
,
J.
Weston
, and
B.
Schölkopf
, “
Learning with local and global consistency
,” in
Proceedings of the 16th International Conference on Neural Information Processing Systems
,
Whistler, BC
(MIT Press Cambridge, MA,
2003
), pp. 321–328, see http://dl.acm.org/citation.cfm?id=2981345.2981386.
41.
M.
Kaczmarski
,
K.
Czerski
,
D.
Weissbach
,
A. I.
Kilic
,
G.
Ruprecht
, and
A.
Huke
,
Acta Phys. Pol. B
48
,
489
(
2017
).
42.
F. E.
Cecil
,
H.
Liu
,
J. S.
Yan
, and
G. M.
Hale
,
Phys. Rev. C
47
,
1178
(
1993
).
43.
E. W.
Thomas
,
Particle Interactions with Surfaces, Vol. 3, Atomic Data for Fusion
(
Oak Ridge National Laboratory
,
1985
).
44.
R. A.
Baragiola
and
P.
Riccardi
, “
Electron emission from surfaces induced by slow ions and atoms
,” in
Reactive Sputter Deposition
, Springer Series in Materials Science, Vol. 109, edited by
D.
Depla
and
S.
Mahieu
(
Springer
,
Berlin
,
2008
).
45.
Y.
Yamamura
and
H.
Tawara
,
At. Data Nucl. Data Tables
62
,
149
(
1996
).
46.
C. E.
Kessel
 et al,
Fusion Eng. Des.
135
,
236
(
2018
).
47.
V.
Kolobov
and
V.
Godyak
,
Phys. Plasmas
26
,
060601
(
2019
).
48.
J.
Carlsson
,
A.
Khrabrov
,
I.
Kaganovich
,
T.
Sommerer
, and
D.
Keating
,
Plasma Sources Sci. Technol.
26
,
014003
(
2017
).
49.
L.
Xu
,
A. V.
Khrabrov
,
I. D.
Kaganovich
, and
T. J.
Sommerer
,
Phys. Plasmas
24
,
093511
(
2017
).
50.
W.
Yang
,
S. N.
Averkin
,
A. V.
Khrabrov
,
I. D.
Kaganovich
,
Y.-N.
Wang
,
S.
Aleiferis
, and
P.
Svarnas
,
Phys. Plasmas
25
,
113509
(
2018
).
51.
J. N.
Bahcall
,
L. S.
Brown
,
A.
Gruzinov
, and
R. F.
Sawyer
,
Astron. Astrophys.
383
,
291
(
2002
).
52.
Y.
Wu
, e-print arXiv:1901.08979v1 (
2019
).
53.
A.
Persaud
 et al,
Rev. Sci. Instrum.
83
,
02B312
(
2012
).
54.
V. A.
Lisovskiy
,
K. P.
Artushenko
, and
V. D.
Yegorenkov
,
Phys. Scr.
91
,
085601
(
2016
).
You do not currently have access to this content.