Multifunctional probes play an increasing role even beyond applications in biomedicine. Multifunctionality introduced by the dual types of complementary probes is always attractive because, in this case, functionalized objects inherit the function of both materials. Porous calcium carbonate microparticles are becoming popular carriers of biomolecules and biosensors, as well as imaging enhancers. We demonstrate here a dual function of these carriers by incorporating both magnetic and silver nanoparticles. Magnetic nanoparticles enable movements and displacements by a magnetic field, while silver nanoparticles provide surface-enhanced Raman signal amplification necessary for the detection of biomolecules. Application of such dual-functional carriers is foreseen beyond the applications of biomedicine and theranostics.

1.
L.
Sercombe
,
T.
Veerati
,
F.
Moheimani
,
S. Y.
Wu
,
A. K.
Sood
, and
S.
Hua
, “
Advances and challenges of liposome assisted drug delivery
,”
Front. Pharmacol.
6
,
286
(
2015
).
2.
I. M.
Laura
,
F.
Dosio
, and
L.
Cattel
, “
Stealth liposomes: Review of the basic science, rationale and clinical applications, existing and potential
,”
Int. J. Nanomedicine
1
,
297
(
2015
).
3.
L. D.
Danilo
,
Preparation of Liposomes
(
Avanti Polar Lipids
,
2015
).
4.
C.
Bharti
,
U.
Nagaich
,
A.
Pal
, and
N.
Gulati
, “
Mesoporous silica nanoparticles in target drug delivery system: A review
,”
Int. J. Pharm. Investig.
5
,
124
133
(
2015
).
5.
R.
Rothon
and
C.
DeArmitt
, “
Fillers (including fiber reinforcements)
,” in
Brydson’s Plastics Materials
,
8th ed., edited by M. Gilbert (Butterworth-Heinemann, 2017), Chap. 8, pp. 169–204
.
6.
S. P.
Gopi
,
V.
Subramanian
, and
K.
Palanisamy
, “
Aragonite-calcite-vaterite: A temperature influenced sequential polymorphic transformation of CaCO3 in the presence of DTPA
,”
Mater. Res. Bull.
48
,
1906
1912
(
2013
).
7.
J. D.
Rodriguez-Blanco
,
S.
Shaw
, and
L. G.
Benning
, “
The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite
,”
Nanoscale
3
(
1
),
265
271
(
2011
).
8.
B. V.
Parakhonskiy
,
A. M.
Yashchenok
,
S.
Donatan
,
D. V.
Volodkin
,
F.
Tessarolo
,
R.
Antolini
,
H.
Möhwald
, and
A. G.
Skirtach
, “
Macromolecule loading into spherical, elliptical, star-like and cubic calcium carbonate carriers
,”
Chem. Phys. Chem.
15
,
2817
2822
(
2014
).
9.
D. B.
Trushina
,
T. V.
Bukreeva
,
M. V.
Kovalchuk
, and
M. N.
Antipina
, “
CaCO3 vaterite microparticles for biomedical and personal care applications
,”
Mater. Sci. Eng. C
45
,
644
658
(
2014
).
10.
S.
Schmidt
and
D. V.
Volodkin
, “
Microparticulate biomolecules by mild CaCO3 templating
,”
J. Mater. Chem. B
1
,
1210
(
2013
).
11.
J.-P.
Andreassen
, “
Formation mechanism and morphology in precipitation of vaterite-nano-aggregation or crystal growth
,”
J. Cryst. Growth
274
,
256
264
(
2005
).
12.
Y. I.
Svenskaya
,
H.
Fattah
,
O. A.
Inozemtseva
,
A. G.
Ivanova
,
S. N.
Shtykov
,
D. A.
Gorin
, and
B. V.
Parakhonskiy
, “
Key parameters for size- and shape-controlled synthesis of vaterite particles
,”
Cryst. Growth Des.
18
,
331
337
(
2018
).
13.
Y. I.
Svenskaya
,
H.
Fattah
,
A. M.
Zakharevich
,
D. A.
Gorin
,
G. B.
Sukhorukov
, and
B. V.
Parakhonskiy
, “
Ultrasonically assisted fabrication of vaterite submicron-sized carriers
,”
Adv. Powder Technol.
27
,
618
624
(
2016
).
14.
B. V.
Parakhonskiy
,
A.
Haase
, and
R.
Antolini
, “
Sub-micrometer vaterite containers: Synthesis, substance loading, and release
,”
Angew. Chem. Int. Ed.
51
,
1195
1197
(
2012
).
15.
A. A.
Abalymov
,
R. A.
Verkhovskii
,
M. V.
Novoselova
,
B. V.
Parakhonskiy
,
D. A.
Gorin
,
A. M.
Yashchenok
, and
G. B.
Sukhorukov
, “
Live-cell imaging by confocal Raman and fluorescence microscopy recognizes the crystal structure of calcium carbonate particles in HeLa cells
,”
Biotechnol. J.
13
,
1800071
(
2018
).
16.
Y. I.
Svenskaya
,
B. V.
Parakhonskiy
,
A.
Haase
,
V.
Atkin
,
E.
Lukyanets
,
D. A.
Gorin
, and
R.
Antolini
, “
Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer
,”
Biophys. Chem.
182
,
11
15
(
2013
).
17.
C.
Muderrisoglu
,
M. S.
Saveleva
,
A. A.
Abalymov
,
L.
Van der Meeren
,
A.
Ivanova
,
V.
Atkin
,
B. V.
Parakhonskiy
, and
A. G.
Skirtach
, “
Nanostructured biointerfaces based on bioceramic calcium carbonate/hydrogel coatings on titanium with an active enzyme for stimulating osteoblasts growth
,”
Adv. Mater. Interfaces
5
,
1800452
(
2018
).
18.
M. S.
Saveleva
,
A. N.
Ivanov
,
M. O.
Kurtukova
,
V. S.
Atkin
,
A. G.
Ivanova
,
G. P.
Lyubun
,
A. V.
Martyukova
,
E. I.
Cherevko
,
A. K.
Sargsyan
,
A. S.
Fedonnikov
,
I. A.
Norkin
,
A. G.
Skirtach
,
D. A.
Gorin
, and
B. V.
Parakhonskiy
, “
Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications
,”
Mater. Sci. Eng. C
85
,
57
67
(
2018
).
19.
Y.
Won
,
H. S.
Jang
,
D.-W.
Chung
, and
L. A.
Stanciu
, “
Multifunctional calcium carbonate microparticles: Synthesis and biological applications
,”
J. Mater. Chem.
20
,
7728
(
2010
).
20.
D. A.
Gorin
,
S. A.
Portnov
,
O. A.
Inozemtseva
,
Z.
Luklinska
,
A. M.
Yashchenok
,
A. M.
Pavlov
,
A. G.
Skirtach
,
H.
Möhwald
, and
G. B.
Sukhorukov
, “
Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation
,”
Phys. Chem. Chem. Phys.
10
,
6899
6905
(
2008
).
21.
A.
Sergeeva
,
R.
Sergeev
,
E.
Lengert
,
A.
Zakharevich
,
B. V.
Parakhonskiy
,
D.
Gorin
,
S.
Sergeev
, and
D.
Volodkin
, “
Composite magnetite and protein containing CaCO3 crystals. External manipulation and vaterite → calcite recrystallization-mediated release performance
,”
ACS Appl. Mater. Interfaces
7
,
21315
21325
(
2015
).
22.
S. V.
German
,
M. V.
Novoselova
,
D. N.
Bratashov
,
P. A.
Demina
,
V. S.
Atkin
,
D. V.
Voronin
,
B. N.
Khlebtsov
,
B. V.
Parakhonskiy
,
G. B.
Sukhorukov
, and
D. A.
Gorin
, “
High-efficiency freezing-induced loading of inorganic nanoparticles and proteins into micron- and submicron-sized porous particles
,”
Sci. Rep.
8
,
17763
(
2018
).
23.
R.
Kamyshinsky
,
I.
Marchenko
,
B. V.
Parakhonskiy
,
A.
Yashchenok
,
Y.
Chesnokov
,
A.
Mikhutkin
,
D.
Gorin
,
A.
Vasiliev
, and
T.
Bukreeva
, “
Composite materials based on Ag nanoparticles in situ synthesized on the vaterite porous matrices
,”
Nanotechnology
30
,
035603
(
2019
).
24.
B. V.
Parakhonskiy
,
M. F.
Bedard
,
T. V.
Bukreeva
,
G. B.
Sukhorukov
,
H.
Möhwald
, and
A. G.
Skirtach
, “
Nanoparticles on polyelectrolytes at low concentration: Controlling concentration and size
,”
J. Phys. Chem. C
114
,
1996
2002
(
2010
).
25.
R.
Xiong
,
S. J.
Soenen
,
K.
Braeckmans
, and
A. G.
Skirtach
, “
Towards theranostic multicompartment microcapsules: In-situ diagnostics and laser-induced treatment
,”
Theranostics
3
,
141
151
(
2013
).
26.
I. V.
Vidiasheva
,
A. A.
Abalymov
,
M. A.
Kurochkin
,
O. A.
Mayorova
,
M. V.
Lomova
,
S. V.
German
,
D. N.
Khalenkow
,
M. N.
Zharkov
,
D. A.
Gorin
,
A. G.
Skirtach
,
V. V.
Tuchin
, and
G. B.
Sukhorukov
, “
Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers
,”
Biomater. Sci.
6
,
2219
2229
(
2018
).
27.
D. V.
Voronin
,
O. A.
Sindeeva
,
M. A.
Kurochkin
,
O.
Mayorova
,
I. V.
Fedosov
,
O.
Semyachkina-Glushkovskaya
,
D. A.
Gorin
,
V. V.
Tuchin
, and
G. B.
Sukhorukov
, “
In vitro and in vivo visualization and trapping of fluorescent magnetic microcapsules in a bloodstream
,”
ACS Appl. Mater. Interfaces
9
,
6885
6893
(
2017
).
28.
A.
Ali
,
H.
Zafar
,
M.
Zia
,
I.
ul Haq
,
A. R.
Phull
,
J. S.
Ali
, and
A.
Hussain
, “
Synthesis, characterization, applications, and challenges of iron oxide nanoparticles
,”
Nanotechnol. Sci. Appl.
9
,
49
67
(
2016
), PMCID: PMC4998023.
29.
Z. R.
Stephen
,
F. M.
Kievit
, and
M.
Zhang
, “
Magnetite nanoparticles for medical MR imaging
,”
Mater. Today
14
,
330
338
(
2012
).
30.
A.
Akbarzadeh
,
M.
Samiei
, and
S.
Davaran
, “
Magnetic nanoparticles : Preparation, physical properties, and applications in biomedicine
,”
Nanoscale Res. Lett.
7
,
1
13
(
2012
).
31.
D. L.
Tran
,
V. H.
Le
,
H. L.
Pham
,
T. M. N.
Hoang
,
T. Q.
Nguyen
,
T. T.
Luong
,
P. T.
Ha
, and
X. P.
Nguyen
, “
Biomedical and environmental applications of magnetic nanoparticles
,”
Adv. Nat. Sci. Nanosci. Nanotechnol.
1
,
045013
(
2011
).
32.
M. E.
De Sousa
,
M. B.
Fernández Van Raap
,
P. C.
Rivas
,
P.
Mendoza Zélis
,
P.
Girardin
,
G. A.
Pasquevich
,
J. L.
Alessandrini
,
D.
Muraca
, and
F. H.
Sánchez
, “
Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia
,”
J. Phys. Chem. C
117
,
5436
5445
(
2013
).
33.
M.
Rǎcuciu
,
D. E.
Creangǎ
, and
A.
Airinei
, “
Citric-acid-coated magnetite nanoparticles for biological applications
,”
Eur. Phys. J. E
21
,
117
121
(
2006
).
34.
J. J.
Mock
,
M.
Barbic
,
D. R.
Smith
,
D. A.
Schultz
, and
S.
Schultz
. “
Shape effects in plasmon resonance of individual colloidal silver nanoparticles
,”
J. Chem. Phys.
116
(
15
),
6755
6759
(
2002
).
35.
S. L.
Smitha
,
K. M.
Nissamudeen
,
D.
Philip
, and
K. G.
Gopchandran
. “
Studies on surface plasmon resonance and photoluminescence of silver nanoparticles
,”
Spectrochim. Acta: Part A: Mol. Biomol. Spectrosc.
71
(
1
),
186
190
(
2008
).
36.
L.
Gharibshahi
,
E.
Saion
,
E.
Gharibshahi
,
A. H.
Shaari
, and
K. A.
Matori
, “
Structural and optical properties of ag nanoparticles synthesized by thermal treatment method
,”
Materials
10
,
402
(
2017
).
37.
M.
Gühlke
,
S.
Selve
, and
J.
Kneippa
, “
Magnetic separation and SERS observation of analyte molecules on bifunctional silver/iron oxide composite nanostructures
,”
J. Raman Spectrosc.
43
,
1204
1207
(
2012
).
38.
A. M.
Yashchenok
,
A.
Masic
,
D. A.
Gorin
,
B. S.
Shim
,
N. A.
Kotov
,
P.
Fratzl
,
H.
Möhwald
, and
A. G.
Skirtach
, “
Nanoengineered colloidal probes for Raman-based detection of biomolecules inside living cells
,”
Small
9
,
351
356
(
2013
).
39.
D.
Graham
,
M.
Moskovits
, and
Z.-Q.
Tian
, “
SERS—Facts, figures and the future
,”
Chem. Soc. Rev.
46
,
3864
3865
(
2017
).
40.
D.
Zopf
,
A.
Pittner
,
A.
Dathe
,
N.
Grosse
,
A.
Csáki
,
K.
Arstila
,
J. J.
Toppari
,
W.
Schott
,
D.
Dontsov
,
G.
Uhlrich
,
W.
Fritzsche
, and
O.
Stranik
, “
Plasmonic nanosensor array for multiplexed DNA-based pathogen detection
,”
ACS Sensors
4
,
335
343
(
2019
).
41.
A.
Raza
,
S.
Clemmen
,
P.
Wuytens
,
M.
Muneeb
,
M.
Van Daele
,
J.
Dendooven
,
C.
Detavernier
,
A.
Skirtach
, and
R.
Baets
, “
ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy
,”
APL Photonics
3
,
116105
(
2018
).
42.
D. V.
Volodkin
,
N. I.
Larionova
, and
G. B.
Sukhorukov
, “
Protein encapsulation via porous CaCO3 microparticles templating
,”
Biomacromolecules
5
,
1962
1972
(
2004
).
43.
W.
Elmore
, “
Ferromagnetic colloid for studying magnetic structures
,”
Phys. Rev.
54
,
309
310
(
1938
).
44.
R.
Kamyshinsky
,
I.
Marchenko
, and
B.
Parakhonskiy
, “
The vaterite porous matrices composite materials based on Ag nanoparticles in situ synthesized on the vaterite porous matrices
,”
Nanotechnology
30
,
035603
(
2019
).
45.
K.
Kneipp
,
H.
Kneipp
, and
J.
Kneipp
, “
Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single-molecule Raman spectroscopy to ultrasensitive probing in live cells single-molecule Raman scattering in local
,”
Acc. Chem. Res.
39
,
443
450
(
2006
).
46.
J.
Soukupová
,
L.
Kvítek
,
A.
Panáček
,
T.
Nevěčná
, and
R.
Zbořil
, “
Comprehensive study on surfactant role on silver nanoparticles prepared via modified Tollens process
,”
Mater. Chem. Phys.
111
,
77
81
(
2008
).
47.
R.
Dondi
,
W.
Su
,
G.
Griffith
,
G.
Clark
, and
G.
Burley
, “
Highly size and shape controlled synthesis of silver nanoparticles via a templated Tollens rection
,”
Small
8
,
770
776
(
2012
).
48.
Y.
Yin
,
Z.
Zhong
,
B. D.
Gates
,
Z.-Y.
Li
,
Y.
Xia
, and
S.
Venkateswaran
, “
Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process
,”
J. Mater. Chem.
12
,
522
527
(
2002
).
49.
T. V.
Bukreeva
,
I. V.
Marchenko
,
B. B. V.
Parakhonskiy
,
Y. V.
Grigor’ev
, and
Y. V.
Grigor’ev
, “
Formation of silver nanoparticles on shells of polyelectrolyte capsules using silver-mirror reaction
,”
Colloid J.
71
,
596
602
(
2009
).
50.
K.
Hering
,
D.
Cialla
,
K.
Ackermann
,
T.
Dörfer
,
R.
Möller
,
H.
Schneidewind
,
R.
Mattheis
,
W.
Fritzsche
,
P.
Rösch
, and
J.
Popp
, “
SERS: A versatile tool in chemical and biochemical diagnostics
,”
Anal. Bioanal. Chem.
390
,
113
124
(
2008
).
51.
H.
Ko
,
S.
Singamaneni
, and
V. V.
Tsukruk
, “
Nanostructured surfaces and assemblies as SERS media
,”
Small
4
,
1576
1599
(
2008
).
52.
C.
Krafft
,
M.
Schmitt
,
I. W.
Schie
,
D.
Cialla-May
,
C.
Matthäus
,
T.
Bocklitz
, and
J.
Popp
, “
Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches
,”
Angew. Chemie Int. Ed.
56
,
4392
4430
(
2017
).
53.
M.
Tebbe
,
P.
Cherepanov
,
E. V.
Skorb
,
S. K.
Poznyak
,
J. G.
De Abajo
,
A.
Fery
,
D. V.
Andreeva
,
R. A. A.
Puebla
, and
N.
Pazos-Perez
, “
SERS platforms of plasmonic hydrophobic surfaces for analyte concentration: Hierarchically assembled gold nanorods on anodized aluminum
,”
Part. Part. Syst. Charact.
31
,
1134
1140
(
2014
).
54.
N.
Bontempi
,
L.
Carletti
,
C.
De Angelis
, and
I.
Alessandri
, “
Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces
,”
Nanoscale
8
,
3226
3231
(
2016
).
55.
M. S.
Saveleva
,
K.
Eftekhari
,
A.
Abalymov
,
T. E. L.
Douglas
,
D.
Volodkin
,
B. V.
Parakhonskiy
, and
A. G.
Skirtach
, “
Hierarchy of hybrid materials—The place of inorganics-in-organics in it, their composition and applications
,”
Front. Chem.
7
,
1
21
(
2019
).
56.
R. V.
Chernozem
,
M. A.
Surmeneva
,
V.
Atkin
,
B.
Krause
,
T.
Baumbach
,
B. V.
Parakhonskiy
,
D.
Khalenkow
,
A. G.
Skirtach
, and
R. A.
Surmenev
, “
Plasmonic hybrid biocomposite as an effective substrate for detection of biomolecules by surface-enhanced Raman spectroscopy
,”
Russ. Phys. J.
61
,
1288
1293
(
2018
).
57.
C.
Wu
,
E.
Chen
, and
J.
Wei
, “
Surface enhanced Raman spectroscopy of rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles
,”
Colloids Surf. A
506
,
450
456
(
2016
).
58.
M.
Delcea
,
H.
Möhwald
, and
A. G.
Skirtach
, “
Stimuli-responsive LbL capsules and nanoshells for drug delivery
,”
Adv. Drug Deliv. Rev.
63
,
730
747
(
2011
).
You do not currently have access to this content.