We present a theoretical analysis of electronic structure evolution in the highly-mismatched dilute carbide group-IV alloy GeC. For ordered alloy supercells, we demonstrate that C incorporation strongly perturbs the conduction band (CB) structure by driving the hybridization of -symmetric linear combinations of Ge states lying close in energy to the CB edge. This leads, in the ultradilute limit, to the alloy CB edge being formed primarily of an -symmetric linear combination of the L-point CB edge states of the Ge host matrix semiconductor. Our calculations describe the emergence of a “quasidirect” alloy bandgap, which retains a significant admixture of indirect Ge L-point CB edge character. We then analyze the evolution of the electronic structure of realistic (large, disordered) GeC alloy supercells for C compositions up to %. We show that short-range alloy disorder introduces a distribution of localized states at energies below the Ge CB edge, with these states acquiring minimal direct () character. Our calculations demonstrate strong intrinsic inhomogeneous energy broadening of the CB edge Bloch character, driven by hybridization between Ge host matrix and C-related localized states. The trends identified by our calculations are markedly different to those expected based on a recently proposed interpretation of the CB structure based on the band anticrossing model. The implications of our findings for device applications are discussed.
Skip Nav Destination
Article navigation
21 November 2019
Research Article|
November 20 2019
Electronic structure evolution in dilute carbide Ge1−xCx alloys and implications for device applications
Special Collection:
Highly Mismatched Semiconductors Alloys: from Atoms to Devices
Christopher A. Broderick
;
Christopher A. Broderick
a)
1
Tyndall National Institute, University College Cork
, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
2
Department of Physics, University College Cork
, Cork T12 YN60, Ireland
Search for other works by this author on:
Michael D. Dunne;
Michael D. Dunne
1
Tyndall National Institute, University College Cork
, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
2
Department of Physics, University College Cork
, Cork T12 YN60, Ireland
Search for other works by this author on:
Daniel S. P. Tanner;
Daniel S. P. Tanner
1
Tyndall National Institute, University College Cork
, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
Search for other works by this author on:
Eoin P. O’Reilly
Eoin P. O’Reilly
1
Tyndall National Institute, University College Cork
, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
2
Department of Physics, University College Cork
, Cork T12 YN60, Ireland
Search for other works by this author on:
a)
Electronic mail: c.broderick@umail.ucc.ie
Note: This paper is part of the Special Topic on Highly Mismatched Semiconductors Alloys: from Atoms to Devices.
J. Appl. Phys. 126, 195702 (2019)
Article history
Received:
June 03 2019
Accepted:
September 09 2019
Citation
Christopher A. Broderick, Michael D. Dunne, Daniel S. P. Tanner, Eoin P. O’Reilly; Electronic structure evolution in dilute carbide Ge1−xCx alloys and implications for device applications. J. Appl. Phys. 21 November 2019; 126 (19): 195702. https://doi.org/10.1063/1.5111976
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00