We present a theoretical analysis of electronic structure evolution in the highly-mismatched dilute carbide group-IV alloy Ge1xCx. For ordered alloy supercells, we demonstrate that C incorporation strongly perturbs the conduction band (CB) structure by driving the hybridization of A1-symmetric linear combinations of Ge states lying close in energy to the CB edge. This leads, in the ultradilute limit, to the alloy CB edge being formed primarily of an A1-symmetric linear combination of the L-point CB edge states of the Ge host matrix semiconductor. Our calculations describe the emergence of a “quasidirect” alloy bandgap, which retains a significant admixture of indirect Ge L-point CB edge character. We then analyze the evolution of the electronic structure of realistic (large, disordered) Ge1xCx alloy supercells for C compositions up to x=2%. We show that short-range alloy disorder introduces a distribution of localized states at energies below the Ge CB edge, with these states acquiring minimal direct (Γ) character. Our calculations demonstrate strong intrinsic inhomogeneous energy broadening of the CB edge Bloch character, driven by hybridization between Ge host matrix and C-related localized states. The trends identified by our calculations are markedly different to those expected based on a recently proposed interpretation of the CB structure based on the band anticrossing model. The implications of our findings for device applications are discussed.

1.
Z.
Zhou
,
B.
Yin
, and
J.
Michel
,
Light Sci. Appl.
4
,
e358
(
2015
).
2.
S.
Saito
,
A. Z.
Al-Attili
,
K.
Oda
, and
Y.
Ishikawa
,
Semicond. Sci. Technol.
31
,
043002
(
2016
).
3.
D.
Thomson
,
A.
Zilkie
,
J. E.
Bowers
,
T.
Komljenovic
,
G. T.
Reed
,
L.
Vivien
,
D.
Marris-Morini
,
E.
Cassan
,
L.
Virot
,
J.-M.
Fédéli
et al.,
J. Opt.
18
,
073003
(
2016
).
4.
M.
Yamaguchi
,
T.
Takamoto
,
K.
Araki
, and
N. J.
Ekins-Daukes
,
Solar Energy
79
,
78
(
2005
).
5.
M.
Yamaguchi
,
K.-I.
Nishimura
,
T.
Sasaki
,
H.
Suzuki
,
K.
Arafune
,
N.
Kojima
,
Y.
Ohsita
,
Y.
Okada
,
A.
Yamamoto
,
T.
Takamoto
et al.,
Solar Energy
82
,
173
(
2008
).
6.
R.
Roucka
,
A.
Clark
,
T.
Wilson
,
T.
Thomas
,
M.
Führer
,
N. J.
Ekins-Daukes
,
A.
Johnson
,
R.
Hoffman
, and
D.
Begarney
,
IEEE J. Photovolt.
6
,
1025
(
2016
).
7.
R.
Geiger
,
T.
Zabel
, and
H.
Sigg
,
Front. Mater.
2
,
52
(
2015
).
8.
V.
Reboud
,
A.
Gassenq
,
J. M.
Hartmann
,
J.
Widiez
,
L.
Virot
,
J.
Aubin
,
K.
Guilloy
,
S.
Tardif
,
J. M.
Fédéli
,
N.
Pauc
et al.,
Prog. Cryst. Growth Charact.
63
,
1
(
2017
).
9.
F.
Zhang
,
V. H.
Crespi
, and
P.
Zhang
,
Phys. Rev. Lett.
102
,
156401
(
2009
).
10.
M. E.
Kurdia
,
H.
Bertin
,
E.
Martincic
,
M.
de Kersauson
,
G.
Fishman
,
S.
Sauvage
,
A.
Bosseboeuf
, and
P.
Boucauda
,
Appl. Phys. Lett.
96
,
041909
(
2010
).
11.
J. R.
Sánchez-Pérez
,
C.
Boztug
,
F.
Chen
,
F. F.
Sudradjat
,
D. M.
Paskiewicz
,
R. B.
Jacobson
,
M. G.
Lagally
, and
R.
Paiella
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
18893
(
2011
).
12.
M. J.
Süess
,
R.
Geiger
,
R. A.
Minamisawa
,
G.
Schiefler
,
J.
Frigerio
,
D.
Chrastina
,
G.
Isella
,
R.
Spolenak
,
J.
Faist
, and
H.
Sigg
,
Nat. Photonics
7
,
466
(
2013
).
13.
J.
Kouvetakis
,
J.
Menendez
, and
A. V. G.
Chizmeshya
,
Annu. Rev. Mater. Res.
36
,
497
(
2006
).
14.
P.
Moontragoon
,
Z.
Ikonić
, and
P.
Harrison
,
Semicond. Sci. Technol.
22
,
742
(
2007
).
15.
R.
Soref
,
Phil. Trans. R. Soc. A
372
,
0113
(
2014
).
16.
S.
Zaima
,
O.
Nakatsuka
,
N.
Taoka
,
M.
Kurosawa
,
W.
Takeuchi
, and
M.
Sakashita
,
Sci. Technol. Adv. Mater.
16
,
043502
(
2015
).
17.
S.
Wirths
,
R.
Geiger
,
N.
von den Driesch
,
G.
Mussler
,
T.
Stoica
,
S.
Mantl
,
Z.
Ikonic
,
M.
Luysberg
,
S.
Chiussi
,
J. M.
Hartmann
et al.,
Nat. Photonics
9
,
88
(
2015
).
18.
J.
Margetis
,
Y.
Zhou
,
W.
Dou
,
P. C.
Grant
,
B.
Alharthi
et al.,
Appl. Phys. Lett.
113
,
221104
(
2018
).
19.
W.
Huang
,
B.
Cheng
,
C.
Xue
, and
C.
Li
,
Physica B
443
,
43
(
2014
).
20.
W.
Huang
,
B.
Cheng
,
C.
Xue
, and
H.
Yang
,
J. Alloy Compd.
701
,
816
(
2017
).
21.
H.
Alahmad
,
A.
Mosleh
,
M.
Alher
,
S.
Fahimeh Banihashemian
,
S. A.
Ghetmiri
,
S.
Al-Kabi
,
W.
Du
,
B.
Li
,
S.-Q.
Yu
et al.,
J. Electron. Mater.
47
,
3733
(
2018
).
22.
X.
Liu
,
J.
Zheng
,
L.
Zhou
,
Z.
Liu
,
Y.
Zuo
,
C.
Xueab
, and
B.
Cheng
,
J. Alloy Compd.
785
,
228
(
2019
).
23.
C. A.
Broderick
,
E. J.
O’Halloran
, and
E. P.
O’Reilly
, “First principles analysis of electronic structure evolution and the indirect- to direct-gap transition in Ge1xPbx group-IV alloys,” e-print arXiv:1911.05679v1 (2019).
24.
C. A.
Stephenson
,
W. A.
O’Brien
,
M. W.
Penninger
,
W. F.
Schneider
,
M.
Gillett-Kunnath
,
J.
Zajicek
,
K. M.
Yu
,
R.
Kudraweic
,
R. A.
Stillwell
, and
M. A.
Wistey
,
J. Appl. Phys.
120
,
053102
(
2016
).
25.
C. A.
Stephenson
,
W. A.
O’Brien
,
M.
Qi
,
M. W.
Penninger
,
W. F.
Schneider
, and
M. A.
Wistey
,
J. Electron. Mater.
45
,
2121
(
2016
).
26.
C. A.
Broderick
,
M. D.
Dunne
,
D. S. P.
Tanner
,
A. C.
Kirwan
,
E. J.
O’Halloran
,
S.
Schulz
, and
E. P.
O’Reilly
, in
Proceedings of the 18th IEEE International Conference on Nanotechnology
(IEEE, 2018).
27.
A. C.
Kirwan
,
S.
Schulz
, and
E. P.
O’Reilly
,
Semicond. Sci. Technol.
34
,
075007
(
2019
).
28.
H. J.
Osten
,
B.
Dietrich
,
H.
Rücker
, and
M.
Methfessel
,
J. Cryst. Growth
150
,
931
(
1995
).
29.
S. C.
Jain
,
H. J.
Osten
,
B.
Dietrich
, and
H.
Rücker
,
Semicond. Sci. Technol.
10
,
1289
(
1995
).
30.
E.
Finkman
,
F.
Meyer
, and
M.
Mamor
,
J. Appl. Phys.
89
,
2580
(
2001
).
31.
H.
Rücker
,
M.
Methfessel
,
B.
Dietrich
,
K.
Pressel
, and
H. J.
Osten
,
Phys. Rev. B
53
,
1302
(
1996
).
32.
M. P.
Vaughan
,
F.
Murphy-Armando
, and
S.
Fahy
,
Phys. Rev. B
85
,
165209
(
2012
).
33.
M.
Okinaka
,
K.
Miyatake
,
J.
Ohta
, and
M.
Nunoshita
,
J. Cryst. Growth
255
,
273
(
2003
).
34.
K. J.
Roe
,
M. W.
Dashiell
,
J.
Kolodzey
,
P.
Bouchaud
, and
J.-M.
Lourtioz
,
J. Vac. Sci. Technol. B
17
,
1301
(
1999
).
35.
J.
Kolodzey
,
P. R.
Berger
,
B. A.
Orner
,
D.
Hits
,
F.
Chen
,
A.
Khan
,
X.
Shao
,
M. M.
Waite
,
S. I.
Shah
,
C. P.
Swann
et al.,
J. Cryst. Growth
157
,
386
(
1995
).
36.
D.
Gall
,
J.
D’Arcy-Gall
, and
J. E.
Greene
,
Phys. Rev. B
62
,
R7723(R)
(
2000
).
37.
S. Y.
Park
,
J.
D’Arcy-Gall
,
D.
Gall
,
Y.-W.
Kim
,
P.
Desjardins
, and
J. E.
Greene
,
J. Appl. Phys.
91
,
3644
(
2002
).
38.
C. A.
Stephenson
,
M.
Gillett-Kunnath
,
W. A.
O’Brien
,
R.
Kudraweic
, and
M. A.
Wistey
,
Crystals
6
,
159
(
2016
).
39.
W.
Shan
,
W.
Walukiewicz
,
J. W. A.
III
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
, and
S. R.
Kurtz
,
Phys. Rev. Lett.
82
,
1221
(
1999
).
40.
J.
Wu
,
W.
Shan
, and
W.
Walukiewicz
,
Semicond. Sci. Technol.
17
,
860
(
2002
).
41.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
J. W. A.
III
,
E. E.
Haller
,
I.
Miotkowski
,
A. K.
Ramdas
,
C.-H.
Su
,
I. K.
Sou
,
R. C. C.
Perera
et al.,
Phys. Rev. B
67
,
035207
(
2003
).
42.
E. P.
O’Reilly
,
A.
Lindsay
,
P. J.
Klar
,
A.
Polimeni
, and
M.
Capizzi
,
Semicond. Sci. Technol.
24
,
033001
(
2009
).
43.
D. S. P.
Tanner
, Ph.D. thesis (
University College Cork
,
Ireland
,
2017
), see http://cora.ucc.ie/handle/10468/5459.
44.
D. S. P.
Tanner
,
C. A.
Broderick
,
A. C.
Kirwan
,
S.
Schulz
, and
E. P.
O’Reilly
, “Elastic properties of elemental, compound, and alloyed group-IV materials: Hybrid density functional theory and valence force field parametrisation” (unpublished).
45.
C. A.
Broderick
,
A. C.
Kirwan
,
S.
Schulz
, and
E. P.
O’Reilly
, “Electronic properties of elemental and compound group-IV materials: Hybrid density functional theory and tight-binding parametrisation” (unpublished).
46.
R. M.
Martin
,
Phys. Rev. B
1
,
4005
(
1970
).
47.
M. J. P.
Musgrave
and
J. A.
Pople
,
Proc. R. Soc. Lond. A
268
,
474
(
1962
).
48.
D. S. P.
Tanner
,
M. A.
Caro
,
S.
Schulz
, and
E. P.
O’Reilly
, “Fully analytic valence force field model for the elastic and inner elastic properties of diamond and zincblende crystals,” e-print arXiv:1908.11245 (2019).
49.
J. D.
Gale
,
JCS Faraday Trans.
93
,
629
(
1997
).
50.
J. D.
Gale
and
A. L.
Rohl
,
Mol. Simul.
29
,
291
(
2003
).
51.
J. D.
Gale
,
Z. Krist.
220
,
552
(
2005
).
52.
E. P.
O’Reilly
and
A.
Lindsay
,
J. Phys. Conf. Ser.
242
,
012002
(
2010
).
53.
P.
Vogl
,
H. P.
Hjalmarson
, and
J. D.
Dow
,
J. Phys. Chem. Solids
44
,
365
(
1983
).
54.
E. J.
O'Halloran
,
C. A.
Broderick
,
D. S. P.
Tanner
,
S.
Schulz
, and
E. P.
O'Reilly
,
Opt. Quant. Electron.
51
,
314
(
2019
).
55.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
A.
Jorio
,
Group Theory: Application to the Physics of Condensed Matter
(
Springer
,
2008
).
56.
J.-M.
Jancu
,
R.
Scholz
,
F.
Beltram
, and
F.
Bassani
,
Phys. Rev. B
57
,
6493
(
1998
).
57.
A.
Lindsay
and
E. P.
O’Reilly
,
Solid State Commun.
112
,
443
(
1999
).
58.
E. P.
O’Reilly
,
A.
Lindsay
,
S.
Tomić
, and
M.
Kamal-Saadi
,
Semicond. Sci. Technol.
17
,
870
(
2002
).
59.
A.
Lindsay
and
E. P.
O’Reilly
,
Phys. Rev. Lett.
93
,
196402
(
2004
).
60.
A.
Lindsay
and
E. P.
O’Reilly
,
Phys. Rev. B
76
,
075210
(
2007
).
61.
A.
Lindsay
and
E. P.
O’Reilly
,
Phys. Status Solidi C
5
,
454
(
2008
).
62.
T.
Sander
,
J.
Teubert
,
P. J.
Klar
,
A.
Lindsay
, and
E. P.
O’Reilly
,
Phys. Rev. B
83
,
235213
(
2011
).
63.
M.
Usman
,
C. A.
Broderick
,
A.
Lindsay
, and
E. P.
O’Reilly
,
Phys. Rev. B
84
,
245202
(
2011
).
64.
M.
Usman
,
C. A.
Broderick
,
Z.
Batool
,
K.
Hild
,
T. J. C.
Hosea
,
S. J.
Sweeney
, and
E. P.
O’Reilly
,
Phys. Rev. B
87
,
115104
(
2013
).
65.
C. A.
Broderick
,
S.
Mazzucato
,
H.
Carrère
,
T.
Amand
,
H.
Makhloufi
,
A.
Arnoult
,
C.
Fontaine
,
O.
Donmez
,
A.
Erol
,
M.
Usman
et al.,
Phys. Rev. B
90
,
195301
(
2014
).
66.
M.
Usman
,
C. A.
Broderick
, and
E. P.
O’Reilly
,
Phys. Rev. Appl.
10
,
044024
(
2018
).
67.
L.
Brey
,
C.
Tejedor
, and
J. A.
Vergés
,
Phys. Rev. B
29
,
6840
(
1984
).
68.
C.
Priester
,
G.
Allan
, and
M.
Lannoo
,
Phys. Rev. B
37
,
8519(R)
(
1988
).
69.
J. C.
Slater
and
G. F.
Koster
,
Phys. Rev.
94
,
1498
(
1954
).
70.
H.
Rücker
,
R.
Enderlein
, and
F.
Bechstedt
,
Phys. Status Solidi B
153
,
595
(
1989
).
71.
M. C.
Muñoz
and
G.
Armelles
,
Phys. Rev. B
48
,
2839
(
1993
).
72.
Y.-H.
Li
,
A.
Walsh
,
S.
Chen
,
W.-J.
Yin
,
J.-H.
Yang
,
J.
Li
,
J. L. F.
D. Silva
,
X. G.
Gong
, and
S.-H.
Wei
,
Appl. Phys. Lett.
94
,
212109
(
2009
).
73.
A. C.
Kirwan
,
E. J.
O’Halloran
,
C. A.
Broderick
,
S.
Schulz
, and
E. P.
O’Reilly
, in
Proceedings of the 18th IEEE International Conference on Nanotechnology
(IEEE, 2018).
74.
T. D.
Eales
,
I. P.
Marko
,
S.
Schulz
,
E. J.
O’Halloran
,
S.
Ghetmiri
,
W.
Du
,
Y.
Zhou
,
S.-Q.
Yu
,
J.
Margetis
,
J.
Tolle
et al.,
Sci. Rep.
9
,
14077
(
2019
).
75.
D. J.
Thouless
,
Phys. Rep.
13
,
93
(
1974
).
76.
D. S. P.
Tanner
,
M. A.
Caro
,
E. P.
O’Reilly
, and
S.
Schulz
,
RSC Adv.
6
,
64513
(
2016
).
77.
A.
Lindsay
and
E. P.
O’Reilly
,
Physica E
21
,
901
(
2004
).
78.
C.
Harris
,
A.
Lindsay
, and
E. P.
O’Reilly
,
J. Phys. Condens. Matter
20
,
295211
(
2008
).
79.
Y.
Zhang
and
L.-W.
Wang
,
Phys. Rev. B
83
,
165208
(
2011
).
80.
P. R. C.
Kent
,
L.
Bellaiche
, and
A.
Zunger
,
Semicond. Sci. Technol.
17
,
851
(
2002
).
81.
C. A.
Broderick
,
M.
Seifikar
,
E. P.
O’Reilly
, and
J. M.
Rorison
,
Dilute Nitride Alloys, Handbook of Optoelectronic Device Modeling and Simulation
(
CRC Press
,
2017
), Vol. 1, Chap. 9.
82.
C. A.
Broderick
,
I. P.
Marko
,
E. P.
O’Reilly
, and
S. J.
Sweeney
,
Dilute Bismide Alloys, Handbook of Optoelectronic Device Modeling and Simulation
(
CRC Press
,
2017
), Vol. 1, Chap. 10.
83.
P. R. C.
Kent
and
A.
Zunger
,
Phys. Rev. B
64
,
115208
(
2001
).
You do not currently have access to this content.