Broadening of the Raman scattering (RS) spectra was studied in monolayer graphene samples irradiated with various doses of ions followed by annealing of radiation damage at different temperatures. It is shown that the width Γ (full width at half maximum) of three main RS lines (G, D, and 2D) increases linearly with the increase of the density of irradiation-induced point defects Nd: ΔΓ = mNd. The slope m is the same for one-phonon emitting G-line and D-line and almost double for a two-phonon emitting 2D-line. It is observed that the width of the D-line for slightly irradiated samples is larger than one half of the width of the 2D-line, which shows that, in the case of the D-line, elastic electron scattering on point defects leads to an additional linewidth. This difference decreases with the increase of Nd, which shows the decrease of the role of scattering on a single point defect because of the spreading of this mechanism over the whole disordered film. A theoretical model of the width of the D-line in disordered graphene is developed. The analytical expressions explain the experimental observations and allow one to determine the numerical coefficient in the in-plane transverse optical phonon dispersion in graphene.

1.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
(
2007
).
2.
A. C.
Ferrari
, “
Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects
,”
Solid State Commun.
143
,
47
(
2007
).
3.
M. L.
Malard
,
M. A.
Pimenta
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Raman spectroscopy in graphene
,”
Phys. Rep.
473
,
51
(
2009
).
4.
A. C.
Ferrari
and
D. M.
Basko
, “
Raman spectroscopy as a versatile tool for studying the properties of graphene
,”
Nat. Nanotechnol.
8
,
235
(
2013
).
5.
R.
Beams
,
L. G.
Cançado
, and
L.
Novotny
, “
Raman characterization of defect and dopants in graphene
,”
J. Phys. Condens. Matter
27
,
083002
(
2015
).
6.
P.
Venezuela
,
M.
Lazzeri
, and
F.
Mauri
, “
Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands
,”
Phys. Rev. B
84
,
035433
(
2011
).
7.
C.
Thomsen
and
S.
Reich
, “
Double resonant Raman scattering in graphite
,”
Phys. Rev. Lett.
85
,
5214
(
2000
).
8.
R.
Saito
,
A.
Jorio
,
A. G.
Souza Filho
,
G.
Dresselhaus
,
M. S.
Dresselhaus
, and
M. A.
Pimenta
, “
Probing phonon dispersion relations of graphite by double resonance Raman scattering
,”
Phys. Rev. Lett.
88
,
027401
(
2002
).
9.
A.
Jorio
,
R.
Saito
,
G.
Dresselhaus
, and
M. S.
Gresselhaus
,
Raman Spectroscopy in Graphene Related Systems
(
Wiley
,
2011
).
10.
M. M.
Lucchese
,
F.
Stavale
,
E. H.
Martins Ferreira
,
C.
Vilani
,
M. V. O.
Moutinho
,
B.
Rodrigo
,
R. B.
Capaz
,
C. A.
Achete
, and
A.
Jorio
, “
Quantifying ion-induced defects and Raman relaxation length in graphene
,”
Carbon
48
,
1592
(
2010
).
11.
E. H.
Martins Ferreira
,
M. V. O.
Moutinho
,
F.
Stavale
,
M. M.
Lucchese
,
R. B.
Capaz
,
C. A.
Achete
, and
A.
Jorio
, “
Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder
,”
Phys. Rev. B
82
,
125429
(
2010
).
12.
M. S.
Dresselhaus
,
A.
Jorio
,
A. G. S.
Filho
, and
R.
Saito
, “
Defect characterization in graphene and carbon nanotubes using Raman spectroscopy
,”
Philos. Trans. R. Soc. A
368
,
5355
(
2010
).
13.
A.
Jorio
,
M. M.
Lucchese
,
F.
Stavale
,
E. H. M.
Ferreira
,
M. V. O.
Moutinho
,
R. B.
Capaz
, and
C. A.
Achete
, “
Raman study of ion-induced defects in N-layer graphene
,”
J. Phys. Condens. Matter
22
,
334204
(
2010
).
14.
R.
Saito
,
M.
Hofmann
,
G.
Dresselhaus
,
A.
Jorio
, and
M. S.
Dresselhaus
, “
Raman spectroscopy of graphene and carbon nanotubes
,”
Adv. Phys.
60
,
413
(
2011
).
15.
Y.-B.
Zhou
,
Z.-M.
Liao
,
Y.-F.
Wang
,
G. S.
Duesberg
,
J.
Xu
,
Q.
Fu
,
X.-S.
Wu
, and
D.-P.
Yu
, “
Ion irradiation induced structural and electrical transition in graphene
,”
J. Chem. Phys.
133
,
234703
(
2010
).
16.
I.
Childres
,
L. A.
Jauregui
,
J.
Tian
, and
Y. P.
Chen
, “
Effect of oxygen plasma etching of graphene studied using Raman spectroscopy and electronic transport measurements
,”
New J. Phys.
13
,
025008
(
2011
).
17.
O.
Lehtinen
,
J.
Kotakoski
,
A. V.
Krasheninnikov
,
A.
Tolvanen
,
K.
Nordlund
, and
J.
Keinonen
, “
Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation
,”
Phys. Rev. B
81
,
153401
(
2010
).
18.
A.
Butenko
,
E.
Zion
,
Y.
Kaganovskii
,
L.
Wolfson
,
V.
Richter
,
A.
Sharoni
,
E.
Kogan
,
M.
Kaveh
, and
I.
Shlimak
, “
Influence of ageing on Raman spectra and conductivity of monolayer graphene samples irradiated by heavy and light ions
,”
J. Appl. Phys.
120
,
044306
(
2016
).
19.
I.
Shlimak
,
A.
Haran
,
E.
Zion
,
T.
Havdala
,
Y.
Kaganovskii
,
A. V.
Butenko
,
L.
Wolfson
,
V.
Richter
,
D.
Naveh
,
A.
Sharoni
,
E.
Kogan
, and
M.
Kaveh
, “
Raman scattering and electrical resistance of highly disordered graphene
,”
Phys. Rev. B
91
,
045414
(
2015
).
20.
E.
Zion
,
A.
Butenko
,
Y.
Kaganovskii
,
L.
Wolfson
,
V.
Richter
,
A.
Sharoni
,
E.
Kogan
,
M.
Kaveh
, and
I.
Shlimak
, “
Effect of annealing on Raman spectra of monolayer graphene samples gradually disordered by ion irradiation
,”
J. Appl. Phys.
121
,
114301
(
2017
).
21.
L. G.
Cancado
,
M. A.
Pimenta
,
R.
Saito
,
A.
Jorio
,
L. O.
Ladeira
,
A.
Grueneis
,
A. G.
Souza-Filho
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite
,”
Phys. Rev. B
66
,
035415
(
2002
).
22.
P. G.
Klemens
, “
Thermal conductivity and lattice vibrational mode
,” in
Solid State Physics
(
Academic Press
,
New York
,
1958
), Vol. 7, p.
1
.
23.
C.
Neumann
,
S.
Reinhardt
,
P.
Venezuela
,
M.
Drogler
,
L.
Banszerus
,
M.
Schmitz
,
K.
Watanabe
,
T.
Taniguchi
,
F.
Mauri
,
B.
Beschoten
,
S. V.
Rotkin
, and
C.
Stampfer
, “
Raman spectroscopy as probe of nanometer-scale strain variations in graphene
,”
Nat. Commun.
6
,
8429
(
2015
).
24.
K.
Jia
,
Y.
Su
,
Y.
Chen
,
J.
Luo
,
J.
Yang
,
P.
Lv
,
Z.
Zhang
,
H.
Zhu
,
C.
Zhao
, and
T.
Ye
, “
Effects of defects and thermal treatment on the properties of graphene
,”
Vacuum
116
,
90
(
2015
).
25.
K. K.
Tiong
,
P. M.
Amirtharaj
,
F. H.
Pollak
, and
D. E.
Aspnes
, “
Effects of As+ ion implantation on the Raman spectra of GaAs: “Spatial correlation” interpretation
,”
Appl. Phys. Lett.
44
,
122
(
1984
).
26.
N. M.
Temme
,
Voigt function
, in
NIST Handbook of Mathematical Functions
, edited by
W. J.
Olver
,
L.
Frank
,
M.
Daniel
,
R. F.
Boisvert
, and
C. W.
Clark
(
Cambridge University Press
,
2010
).
You do not currently have access to this content.