We introduce the annealed-nanograin (a-NG) phase effect and propose it as a new route to high thermoelectric performance. We support that in granular materials with small nanograins, the core of the grains (G-phase) and the grain boundaries (GB-phase) can be electrostatically coupled so that transport is dominated by a single phase, the a-NG phase. We show that concurrent increase in the mobility and the Seebeck coefficient can take place when originally defective nanograins are thermally annealed, because defect repair reduces scatterers in the core of the nanograins and concurrently stimulates more ionized impurities and higher energy barriers at the grain boundaries to fulfill charge neutrality. We compare the a-NG phase with the two phases of a composite grain (the G-phase and the GB-phase) and show that a transition takes place from dominant ionized impurity scattering to dominant phonon scattering. This transition is the signature of the formation of the a-NG phase and the thermoelectric power factor enhancement. Our model has been validated by interpretation of experimental observations in highly B-doped nanocrytalline films. Our findings can be used to engineer nanostructured materials with high thermoelectric performance.

1.
A.
Ioffe
,
Semiconductor Thermoelements and Thermoelectric Cooling
(
Infosearch
,
London
,
1957
).
2.
T.
Harman
and
J.
Honig
,
Thermoelectric and Thermomagnetic Effects and Applications
(
McGraw-Hill
,
New York
,
1967
).
3.
D. M.
Rowe
,
CRC Handbook of Thermoelectrics
(
CRC
,
Boca Raton
,
1995
).
4.
G. S.
Nolas
,
J.
Sharp
, and
H. J.
Goldsmid
,
Thermoelectrics: Basic Principles and New Materials Developments
(
Springer
,
New York
,
2001
).
5.
D. M.
Rowe
,
Thermoelectrics Handbook: Macro to Nano
(
CRC/Taylor & Francis
,
Boca Raton
,
2006
).
6.
H.
Goldsmid
,
Introduction to Thermoelectricity
(
Springer
,
Berlin
,
2016
).
7.
D.
Baretta
,
N.
Neophytou
,
J. M.
Hodgesd
,
M.
Kanatzidis
,
D.
Narducci
,
M.
Martin-Gonzalez
,
M.
Beekman
,
B.
Balke
,
G.
Cerretti
,
W.
Tremel
,
A.
Zevalkink
,
A.
Hofmann
,
C.
Müller
,
B.
Dörling
,
M.
Campoy-Quiles
, and
M.
Caironi
,
Mater. Sci. Eng. R Rep.
138
,
100501
(
2019
).
8.
C.
Gayner
and
Y.
Amouyal
, “
Energy filtering of charge carriers: Current trends, challenges, and prospects for thermoelectric materials
,”
Adv. Funct. Mater.
(published online).
9.
D.
Narducci
,
J. Phys. Energy
1
,
024001
(
2019
).
10.
D.
Donadio
,
Curr. Opin. Green Sustain. Chem.
17
,
35
41
(
2019
).
11.
J. M.
Ziman
,
Electrons and Phonons. The Theory of Transport Phenomena in Solids
(
Oxford University Press
,
2001
).
12.
D. G.
Cahill
,
J. Appl. Phys.
93
,
793
(
2003
).
13.
I.
Zardo
and
R.
Rurali
,
Curr. Opin. Green Sustain. Chem.
17
,
1
(
2019
).
14.
F.
VanGessel
and
P.
Chung
,
Int. J. Heat Mass Transf.
128
,
807
(
2019
).
15.
D. M.
Rowe
and
G.
Min
,
AIP Conf. Proc.
316
,
339
(
1994
).
16.
A.
Shakouri
and
J. E.
Bowers
,
Appl. Phys. Lett.
71
,
1234
(
1997
).
17.
Y.
Nishio
and
T.
Hirano
,
Jpn. J. Appl. Phys.
36
,
170
(
1997
).
18.
G. D.
Mahan
,
J. O.
Sofo
, and
M.
Bartkowiak
,
J. Appl. Phys.
83
,
4683
(
1998
).
19.
G. D.
Mahan
and
L. M.
Woods
,
Phys. Rev. Lett.
80
,
4016
(
1998
).
20.
D. J.
Bergman
and
O.
Levy
,
J. Appl. Phys.
70
,
6821
(
1991
).
21.
A.
Popescu
,
L. M.
Woods
,
J.
Martin
, and
G. S.
Nolas
,
Phys. Rev. B Condens. Matter Mater. Phys.
79
,
205302
(
2009
).
22.
R.
Kim
and
M. S.
Lundstrom
,
J. Appl. Phys.
110
,
034511
(
2011
).
23.
R.
Kim
and
M. S.
Lundstrom
,
J. Appl. Phys.
111
,
024508
(
2012
).
24.
M.
Bachmann
,
M.
Czerner
, and
C.
Heiliger
,
Phys. Rev. B Condens. Matter Mater. Phys.
86
,
115320
(
2012
).
25.
T.
Claudio
,
N.
Stein
,
D. G.
Stroppa
,
B.
Klobes
,
M. M.
Koza
,
P.
Kudejova
,
N.
Petermann
,
H.
Wiggers
,
G.
Schierning
, and
R. P.
Hermann
,
Phys. Chem. Chem. Phys.
16
,
25701
(
2014
).
26.
D.
Narducci
,
S.
Frabboni
, and
X.
Zianni
,
J. Mater. Chem. C
3
,
12176
(
2015
).
27.
X.
Zianni
and
D.
Narducci
,
J. Appl. Phys.
117
,
035102
(
2015
).
28.
C. B.
Vining
,
W.
Laskow
,
J. O.
Hanson
,
R. R. V.
der Beck
, and
P. D.
Gorsuch
,
J. Appl. Phys.
69
,
4333
(
1991
).
29.
Y.
Dua
,
S. Z.
Shen
,
W.
Yang
,
R.
Donelson
,
K.
Cai
, and
P. S.
Casey
,
Synth. Met.
161
,
2688
(
2012
).
30.
C.
Liu
,
J.
Xu
,
B.
Lu
,
R.
Yue
, and
F.
Kong
,
J. Electron. Mater.
41
,
639
(
2012
).
31.
J.
Sun
,
M.-L.
Yeh
,
B. J.
Jung
,
B.
Zhang
,
J.
Feser
,
A.
Majumdar
, and
H. E.
Katz
,
Macromolecules
43
,
2897
(
2010
).
32.
D.
Narducci
,
E.
Selezneva
,
A.
Arcari
,
G. F.
Cerofolini
,
E.
Romano
,
R.
Tonini
, and
G.
Ottaviani
,
MRS Proc.
1314
,
mrsf10-1314
ll05-16
(
2011
).
33.
D.
Narducci
,
E.
Selezneva
,
G. F.
Cerofolini
,
S.
Fraboni
, and
G.
Ottaviani
,
AIP Conf. Proc.
1449
,
311
(
2012
).
34.
D.
Narducci
,
E.
Selezneva
,
G. F.
Cerofolini
,
S.
Fraboni
, and
G.
Ottaviani
,
J. Solid State Chem.
193
,
19
(
2012
).
35.
D.
Narducci
,
E.
Selezneva
,
G.
Cerofolini
,
E.
Romano
,
R.
Tonini
, and
G.
Ottaviani
, in
Proceedings of the 8th European Thermoelectric Conference
(
Como, C.N.R.
,
2010
), pp.
141
146
.
36.
T.
Mori
and
T.
Hara
,
Scr. Mater.
111
,
44
(
2016
).
37.
N.
Neophytou
,
X.
Zianni
,
H.
Kosina
,
S.
Frabboni
,
B.
Lorenzi
, and
D.
Narducci
,
Nanotechnology
24
,
205402
(
2013
).
38.
X.
Zianni
and
D.
Narducci
,
Mater. Today Proc.
8
,
706
(
2019
).
39.
X.
Zianni
and
D.
Narducci
,
Nanoscale
11
,
7667
(
2019
).
40.
C.
Song
,
J.
Xu
,
G.
Chen
,
H.
Sun
,
Y.
Liu
,
W.
Li
,
L.
Xu
,
Z.
Ma
, and
K.
Chen
,
Appl. Surf. Sci.
257
,
1337
(
2010
).
41.
A.
Yusufu
,
K.
Kurosaki
,
Y.
Miyazaki
,
M.
Ishimaru
,
A.
Kosuga
,
Y.
Ohishi
,
H.
Muta
, and
S.
Yamanaka
,
Nanoscale
6
,
13921
(
2014
).
42.
A. J.
Minnich
,
H.
Lee
,
X. W.
Wang
,
G.
Joshi
,
M. S.
Dresselhaus
,
Z. F.
Ren
,
G.
Chen
, and
D.
Vashaee
,
Phys. Rev. B Condens. Matter Mater. Phys.
80
,
155327
(
2009
).
43.
Y.-H.
Gao
,
H.
Chen
,
N.
Liu
, and
R.-Z.
Zhang
,
Results Phys.
11
,
915
(
2018
).
44.
C. B.
Vining
, “The thermoelectric properties of boron-doped silicon and silicon-germanium in the as-hot pressed conditions,” Technical Report, California Institute of Technology, 1988.
You do not currently have access to this content.