We propose a reconfigurable photonic crystal based on split-ring structures, which hosts tunable edge states by controlling the rotation angle of the split-rings. The split-ring structure breaks the inversion symmetry and introduces a nontrivial Dirac mass in the otherwise gapless Dirac photonic spectrum. The sign of the Dirac mass depends on the rotation angle that thus introduces two topologically distinct phases. It is shown that an interface between two split-ring photonic crystals with opposite rotation angles supports gapped edge states. Despite the topologically trivial nature of the split-ring photonic crystal, the dispersion of the edge states is tunable through the rotation angle of the split-ring, making it useful in frequency-selective beam splitters. Our study provides an alternative way for the controlling of edge states and thus can be useful for future integrated photonic circuits.

1.
M.
Notomi
, “
Manipulation light with strongly modulated photonic crystals
,”
Rep. Prog. Phys.
73
,
096501
(
2010
).
2.
M.
Iwanaga
, “
Photonic metamaterials: A new class of materials for manipulating light waves
,”
Sci. Technol. Adv. Mater.
13
,
053002
(
2012
).
3.
T.
Ozawa
,
H. M.
Price
,
A.
Amo
,
N.
Goldman
,
M.
Hafezi
,
L.
Lu
,
M. C.
Rechtsman
,
D.
Schuster
,
J.
Simon
,
O.
Zilberberg
, and
I.
Carusotto
, “
Topological photonics
,”
Rev. Mod. Phys.
91
,
015006
(
2019
).
4.
Y.
Li
and
J.
Mei
, “
Double Dirac cones in two-dimensional dielectric photonic crystals
,”
Opt. Express
23
,
12089
(
2015
).
5.
L.-H.
Wu
and
X.
Hu
,
Phys. Rev. Lett.
114
,
223901
(
2015
).
6.
L.
Xu
,
H.-X.
Wang
,
Y.-D.
Xu
,
H.-Y.
Chen
, and
J.-H.
Jiang
, “
Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals
,”
Opt. Express
24
,
18059
(
2016
).
7.
S.
Barik
,
H.
Miyake
,
W.
DeGottardi
,
E.
Waks
, and
M.
Hafezi
, “
Two-dimensionally confined topological edge states in photonic crystals
,”
New J. Phys.
18
,
113013
(
2016
).
8.
M. I.
Shalaev
,
S.
Desnavi
,
W.
Walasik
, and
N. M.
Litchinitser
, “
Reconfigurable topological photonic crystal
,”
New J. Phys.
20
,
023040
(
2018
).
9.
Y.
Yang
,
Y. F.
Xu
,
T.
Xu
,
H.-X.
Wang
,
J.-H.
Jiang
,
X.
Hu
, and
Z. H.
Hang
,
Phys. Rev. Lett.
120
,
217401
(
2018
).
10.
T.
Ma
and
G.
Shvets
, “
All-Si valley-Hall photonic topological insulator
,”
New J. Phys.
18
,
025012
(
2016
).
11.
T.
Ma
and
G.
Shvets
, “
Scattering-free edge states between heterogeneous photonic topological insulators
,”
Phys. Rev. B
95
,
165102
(
2017
).
12.
Z.
Gao
,
Z.
Yang
,
F.
Gao
,
H.
Xue
,
Y.
Yang
,
J.
Dong
, and
B.
Zhang
, “
Valley surface-wave photonic crystal and its bulk/edge transport
,”
Phys. Rev. B
96
,
201402(R)
(
2017
).
13.
J.-W.
Dong
,
X.-D.
Chen
,
H.
Zhu
,
Y.
Wang
, and
X.
Zhang
, “
Valley photonic crystals for control of spin and topology
,”
Nat. Mater.
16
,
298
(
2017
).
14.
X.
Wu
,
Y.
Meng
,
J.
Tian
,
Y.
Huang
,
H.
Xiang
,
D.
Han
, and
W.
Wen
, “
Direct observation of valley-polarized topological edge states in designer surface plasmon crystals
,”
Nat. Commun.
8
,
1304
(
2017
).
15.
F.
Gao
,
H.
Xue
,
Z.
Yang
,
K.
Lai
,
Y.
Yu
,
X.
Lin
,
Y.
Chong
,
G.
Shvets
, and
B.
Zhang
, “
Topologically protected refraction of robust kink states in valley photonic crystals
,”
Nat. Phys.
14
,
140
(
2018
).
16.
Y.
Kang
,
X.
Ni
,
X.
Cheng
,
A. B.
Khanikaev
, and
A. Z.
Genack
, “
Pseudo-spin-valley coupled edge states in a photonic topological insulator
,”
Nat. Commun.
9
,
3029
(
2018
).
17.
X.
Ni
,
D.
Purtseladze
,
D. A.
Smirnova
,
A.
Slobozhanyuk
,
A.
Alù
, and
A. B.
Khanikaev
, “
Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators
,”
Sci. Adv.
4
,
eaap8802
(
2018
).
18.
M.
Makwana
and
R.
Craster
, “
Geometrically navigating topological plate modes around gentle and sharp bends
,”
Phys. Rev. B
98
,
184105
(
2018
).
19.
M.
Makwana
and
R.
Craster
, “
Designing multidirectional energy splitters and topological valley supernetworks
,”
Phys. Rev. B
98
,
235125
(
2018
).
20.
M. P.
Makwana
and
G. J.
Chaplain
, “Tunable three-way valley Hall energy-splitter: Venturing beyond graphene-like structures,” e-print arXiv:1901.01937 (
2019
).
21.
M.
Makwana
,
R.
Craster
, and
S.
Guenneau
, “
Topological beam-splitting in photonic crystals
,”
Opt. Express
27
,
16088
(
2019
).
22.
H.-C.
Chan
and
G.-Y.
Guo
, “
Tuning topological phase transitions in hexagonal photonic lattices made of triangular rods
,”
Phys. Rev. B
97
,
045422
(
2018
).
23.
H.
Xue
,
F.
Gao
,
Y.
Yu
,
Y.
Chong
,
G.
Shvets
, and
B.
Zhang
, “Spin-valley-controlled photonic insulator,” e-print arXiv:1811.00393 (
2018
).
24.
Y.
Yang
,
Z.
Jia
,
Y.
Wu
,
Z. H.
Hang
,
H.
Jiang
, and
X. C.
Xie
, “Gapped topological kink states and topological corner states in graphene,” e-print arXiv:1903.01816 (
2019
).
25.
E.
Lidorikis
,
M. M.
Sigalas
,
E. N.
Economou
, and
C. M.
Soukoulis
, “
Tight-binding parametrization for photonic band gap materials
,”
Phys. Rev. Lett.
81
,
1405
(
1998
).
26.
W.-Y.
He
and
C. T.
Chan
, “
The emergency of Dirac points in photonic crystals with mirror symmetry
,”
Sci. Rep.
5
,
8186
(
2015
).
27.
J.
Lu
,
C.
Qiu
,
S.
Xu
,
Y.
Ye
,
M.
Ke
, and
Z.
Liu
, “
Dirac cone in two-dimensional artificial crystals for classical waves
,”
Phys. Rev. B
89
,
134302
(
2014
).
28.
B. A.
Bernevig
,
T. L.
Hughes
, and
S. C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
(
2006
).
29.
H.-X.
Wang
,
G.-Y.
Guo
, and
J.-H.
Jiang
, “
Band topology in classical waves: Wilson-loop approach to topological numbers and the fragile topology
,”
New J. Phys.
21
,
093029
(
2019
).
30.
R.
Jackiw
and
C.
Rebbi
, “
Solitons with fermion number ½
,”
Phys. Rev. D
13
,
3398
(
1976
).
31.
B.-Z.
Xia
,
S.-J.
Zheng
,
T.-T.
Liu
,
J.-R.
Jiao
,
N.
Chen
,
H.-Q.
Dai
,
D.-J.
Yu
, and
J.
Liu
, “
Observation of valleylike edge states of sound at a momentum away from the high-symmetry points
,”
Phys. Rev. B
97
,
155124
(
2018
).
32.
C.
He
,
X.
Ni
,
H.
Ge
,
X.-C.
Sun
,
Y.-B.
Chen
,
M.-H.
Lu
,
X.-P.
Liu
, and
Y.-F.
Chen
, “
Acoustic topological insulator and robust one-way sound transport
,”
Nat. Phys.
12
,
1124
(
2016
).

Supplementary Material

You do not currently have access to this content.