Polymethylpentene, commonly referred to by its trade name TPX (Mitsui Chemicals, Inc.), is a thermoplastic polymer that has the potential to be a useful window material for dynamic compression experiments. For such experiments, an optically transparent or a low x-ray absorptive window is often used to maintain stress within the sample during compression. TPX can be used as a low-impedance optical and x-ray window due to its good transmittance in most parts of the electromagnetic spectrum, very low density (0.83 g/cm3), and low x-ray absorption. In dynamic compression experiments, interferometry can be used to determine the particle velocity at the interface between the sample and window. However, velocimetry measures the rate of change of the optical path length, commonly referred to as the apparent particle velocity. An experimentally determined window correction factor is needed to ascertain the actual particle velocity from the measured apparent velocity. Here, we present the results of a series of dynamic compression experiments from 1 to 31 GPa designed to characterize the mechanical and optical response of TPX, determine the range of stresses over which TPX is transparent, and determine the window correction factor. The index of refraction was found to be essentially linear in density, resulting in a simple constant correction factor. TPX was found to remain largely transparent over the entire stress range examined.

1.
J. D.
Lytle
,
G. W.
Wilkerson
, and
J. G.
Jaramillo
,
Appl. Opt.
18
,
1842
(
1979
).
2.
Mitsui Chemicals, see https://www.mitsuichemicals.com/tpx.htm for ASTM physical properties table.
3.
Tydex Optics, see http://www.tydexoptics.com/products/thz˙optics/thz˙materials/ for Material data specifications.
4.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
43
,
4669
(
1972
).
5.
O. T.
Strand
,
D. R.
Goosman
,
C.
Martinez
,
T. L.
Whitworth
, and
W. W.
Kuhlow
,
Rev. Sci. Instrum.
77
,
083108
(
2006
).
6.
M.
Naftaly
,
R. E.
Miles
, and
P. J.
Greenslade
, “THz transmission in polymer materials—A data library,” in
2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics
(IEEE, 2007).
7.
A.
Podzorov
and
G.
Gallot
,
Appl. Opt.
47
,
3254
(
2008
).
8.
T. D.
Aslam
,
R.
Gustavsen
,
N.
Sanchez
, and
B. D.
Bartram
, “
Equation of state for polymethylpentene (TPX) including multishock response
,”
AIP Conf. Proc.
1426
,
767
(
2012
).
9.
T. A.
Haill
,
T. R.
Mattsson
,
S.
Root
,
D. G.
Schroen
, and
D. G.
Flicker
, “
Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams
,”
AIP Conf. Proc.
1426
,
913
(
2012
).
10.
LASL Shock Hugoniot Data, edited by S. P. Marsh (University of California Press, Berkeley, 1980).
11.
T. R.
Mattsson
,
J. M. D.
Lane
,
K. R.
Cochrane
,
M. P.
Desjarlais
,
A. P.
Thompson
,
F.
Pierce
, and
G. S.
Grest
,
Phys. Rev. B
81
,
054103
(
2010
).
12.
S.
Root
,
T. R.
Mattsson
,
K.
Cochrane
,
R. W.
Lemke
, and
M. D.
Knudson
,
J. Appl. Phys.
118
,
205901
(
2015
).
13.
A. C.
Mitchell
and
W. J.
Nellis
,
J. Appl. Phys.
52
,
3363
(
1981
).
14.
S. C.
Jones
and
Y. M.
Gupta
,
J. Appl. Phys.
88
,
5671
(
2000
).
15.
D. H.
Dolan
, Foundations of VISAR analysis, Technical Report, Sandia National Laboratories, 2006.
16.
M. D.
Knudson
and
M. P.
Desjarlais
,
Phys. Rev. B
88
,
184107
(
2013
).
17.
N. K.
Bourne
,
J. Dyn. Behav. Mater.
2
,
33
(
2016
).
18.
D. M.
Dattelbaum
and
J. D.
Coe
,
Polymers
11
,
493
(
2019
).
19.
D. R.
Hardesty
,
J. Appl. Phys.
47
,
1994
(
1976
).
20.
R. E.
Setchell
,
J. Appl. Phys.
50
,
8186
(
1979
).
21.
D.
Hayes
,
J. Appl. Phys.
89
,
6484
(
2001
).
You do not currently have access to this content.