The development of high-performance p-type oxides with high hole mobility and a wide bandgap is critical for the applications of metal oxide semiconductors in vertically integrated CMOS devices [Salahuddin et al., Nat. Electron. 1, 442 (2018)]. Sn2+-based oxides such as SnO and K2Sn2O3 have recently been proposed as high-mobility p-type oxides due to their relatively low effective hole masses, which result from delocalized Sn s-orbital character at the valence band edge. Here, we introduce a promising ternary Sn-O-X compound, Ta2SnO6, which exhibits strong valence band dispersion and a large bandgap. In order to evaluate the performance of this oxide as a p-type semiconductor, we perform first-principles calculations of the phonon-limited room-temperature carrier mobilities in SnO, SnO2, and Ta2SnO6. Electron relaxation time is evaluated, accounting for the scatterings from acoustic deformation potentials and polar optical phonons (POP), within the isotropic and dispersionless approximation. At room temperature, the electron/hole mobilities in a given material (SnO, SnO2, and Ta2SnO6) are found to be limited by POP scattering. SnO2 shows high room-temperature electron mobility of 192 cm2/(V s), while SnO and Ta2SnO6 exhibit impressive hole mobilities, with the upper limit at 60 and 33 cm2/(V s), respectively. We find that carrier effective mass largely accounts for the differences in mobility between these oxides with correspondingly different POP scattering rates. The theoretically predicted intrinsic mobilities of each material will provide the upper limit to the real mobilities for their device applications. Our findings also suggest a necessity of further investigation to identify even higher mobility p-type oxides with smaller hole effective masses.

1.
S.
Salahuddin
,
K.
Ni
, and
S.
Datta
,
Nat. Electron.
1
,
442
(
2018
).
2.
M. M.
Shulaker
,
G.
Hills
,
R. S.
Park
,
R. T.
Howe
,
K.
Saraswat
,
H.-S. P.
Wong
, and
S.
Mitra
,
Nature
547
,
74
(
2017
).
3.
T. F.
Wu
,
H.
Li
,
P.-C.
Huang
,
A.
Rahimi
,
G.
Hills
,
B.
Hodson
,
W.
Hwang
,
J. M.
Rabaey
,
H.-S. P.
Wong
, and
M. M.
Shulaker
,
IEEE J Solid State Circuits
53
,
3183
(
2018
).
4.
M. S.
Ebrahimi
,
G.
Hills
,
M. M.
Sabry
,
M. M.
Shulaker
,
H.
Wei
,
T. F.
Wu
,
S.
Mitra
, and
H.-S. P.
Wong
, “
Monolithic 3D integration advances and challenges: From technology to system levels
,” in
2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)
,
Millbrae, CA
,
6–9 October 2014
(
IEEE
,
2014
), p.
1
.
5.
M. M.
Shulaker
,
T. F.
Wu
,
A.
Pal
,
L.
Zhao
,
Y.
Nishi
,
K.
Saraswat
,
H.-S.
Philip Wong
, and
S.
Mitra
, “
Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs
,” in
2014 IEEE International Electron Devices Meeting
,
San Francisco, CA
,
15–17 December 2014
(
IEEE
,
2014
), p.
27.4.1
.
6.
Y.
Ogo
,
H.
Hiramatsu
,
K.
Nomura
,
H.
Yanagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Appl. Phys. Lett.
93
,
032113
(
2008
).
7.
E.
Fortunato
,
R.
Barros
,
P.
Barquinha
,
V.
Figueiredo
,
S.-H. K.
Park
,
C.-S.
Hwang
, and
R.
Martins
,
Appl. Phys. Lett.
97
,
052105
(
2010
).
8.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
(
2004
).
9.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
,
Adv. Mater.
24
,
2945
(
2012
).
10.
11.
L.
Petti
,
N.
Münzenrieder
,
C.
Vogt
,
H.
Faber
,
L.
Büthe
,
G.
Cantarella
,
F.
Bottacchi
,
T. D.
Anthopoulos
, and
G.
Tröster
,
Appl. Phys. Rev
3
,
021303
(
2016
).
12.
J. K.
Jeong
,
J. H.
Jeong
,
H. W.
Yang
,
J.-S.
Park
,
Y.-G.
Mo
, and
H. D.
Kim
,
Appl. Phys. Lett.
91
,
113505
(
2007
).
13.
C. G.
Granqvist
,
Sol. Energy Mater. Sol. Cells
91
,
1529
(
2007
).
14.
G.
Hautier
,
A.
Miglio
,
G.
Ceder
,
G.-M.
Rignanese
, and
X.
Gonze
,
Nat. Commun.
4
,
2292
(
2013
).
15.
S.
Sheng
,
G.
Fang
,
C.
Li
,
S.
Xu
, and
X.
Zhao
,
Phys. Status Solidi A
203
,
1891
(
2006
).
16.
A.
Banerjee
and
K.
Chattopadhyay
,
Prog. Cryst. Growth Charact. Mater
50
,
52
(
2005
).
17.
W.
Guo
,
L.
Fu
,
Y.
Zhang
,
K.
Zhang
,
L.
Liang
,
Z.
Liu
,
H.
Cao
, and
X.
Pan
,
Appl. Phys. Lett.
96
,
042113
(
2010
).
18.
J.
Caraveo-Frescas
and
H. N.
Alshareef
,
Appl. Phys. Lett.
103
,
222103
(
2013
).
19.
M. V.
Frischbier
,
H. F.
Wardenga
,
M.
Weidner
,
O.
Bierwagen
,
J.
Jia
,
Y.
Shigesato
, and
A.
Klein
,
Thin Solid Films
614
,
62
(
2016
).
20.
S.
Nakao
,
N.
Yamada
,
T.
Hitosugi
,
Y.
Hirose
,
T.
Shimada
, and
T.
Hasegawa
,
Appl. Phys. Express
3
,
031102
(
2010
).
21.
N.
Kikuchi
,
A.
Samizo
,
S.
Ikeda
,
Y.
Aiura
,
K.
Mibu
, and
K.
Nishio
,
Phys. Rev. Mater.
1
,
021601
(
2017
).
22.
See https://materialsproject.org/materials/mp-3593/ for more information about the band structure and formation energy about Sn2Ta2O7.
23.
K.
Kaasbjerg
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
Phys. Rev. B
85
,
115317
(
2012
).
24.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
25.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
26.
G.
Kresse
and
J.
Hafner
,
J. Phys. Condens. Matter
6
,
8245
(
1994
).
27.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
28.
A.
Togo
and
I.
Tanaka
,
Scr. Mater
108
,
1
(
2015
).
29.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
,
J. Chem. Phys.
124
,
154709
(
2006
).
30.
K.
Govaerts
,
R.
Saniz
,
B.
Partoens
, and
D.
Lamoen
,
Phys. Rev. B
87
,
235210
(
2013
).
31.
J.
Pannetier
and
G.
Denes
,
Acta Cryst. B
36
,
2763
(
1980
).
32.
H.
Peng
,
J. D.
Perkins
, and
S.
Lany
,
Chem. Mater.
26
,
4876
(
2014
).
33.
K.
Sundaram
and
G.
Bhagavat
,
J. Phys. D Appl. Phys.
14
,
921
(
1981
).
34.
J.
Sjakste
,
N.
Vast
,
M.
Calandra
, and
F.
Mauri
,
Phys. Rev. B
92
,
054307
(
2015
).
35.
M.
Lundstrom
,
Fundamentals of Carrier Transport
(
Cambridge University Press
,
2009
).
36.
J.
Bardeen
and
W.
Shockley
,
Phys. Rev.
80
,
72
(
1950
).
37.
W.
Perger
,
J.
Criswell
,
B.
Civalleri
, and
R.
Dovesi
,
Comput. Phys. Commun.
180
,
1753
(
2009
).
38.
J.
Xi
,
M.
Long
,
L.
Tang
,
D.
Wang
, and
Z.
Shuai
,
Nanoscale
4
,
4348
(
2012
).
39.
V.-A.
Ha
,
F.
Ricci
,
G.-M.
Rignanese
, and
G.
Hautier
,
J. Mater. Chem. C
5
,
5772
(
2017
).
40.
C.-M.
Liu
,
X.-R.
Chen
, and
G.-F.
Ji
,
Comput. Mater. Sci.
50
,
1571
(
2011
).
41.
Y.
Mi
,
H.
Odaka
, and
S.
Iwata
,
Jpn. J. Appl. Phys.
38
,
3453
(
1999
).
44.
Y.
Kang
,
K.
Krishnaswamy
,
H.
Peelaers
, and
C. G.
Van de Walle
,
J. Phys. Condens. Matter
29
,
234001
(
2017
).
45.
C.
Verdi
and
F.
Giustino
,
Phys. Rev. Lett.
115
,
176401
(
2015
).
46.
J.
Noffsinger
,
F.
Giustino
,
B. D.
Malone
,
C.-H.
Park
,
S. G.
Louie
, and
M. L.
Cohen
,
Comput. Phys. Commun.
181
,
2140
(
2010
).
47.
J.
Kurkijärvi
and
D.
Rainer
, The Dielectric Function of Condensed Systems (Elsevier, 1989), Vol. 24, p. 293.
48.
Y.
Kang
,
K.
Krishnaswamy
,
H.
Peelaers
, and
C. G.
Van de Walle
,
J. Phys. Condens. Matter.
29
,
234001
(
2017
).
49.
See http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/ for more information about the effective mass, dielectric constant, optical phonon frequency and mobility about GaAs.
50.
V.
Coleman
and
C.
Jagadish
, in
Zinc Oxide Bulk, Thin Films and Nanostructures
, edited by
C.
Jagadish
and
S.
Pearton
(
Elsevier
,
2006
), p.
1
.
51.
O.
Madelung
,
U.
Rossler
, and
M.
Schulz
,
Non-Tetrahedrally Bonded Elements and Binary Compounds
(
Springer
,
1998
), Vol. 41.
53.
R.
Weiher
,
J. Appl. Phys.
33
,
2834
(
1962
).
54.
A.
Schleife
,
M. D.
Neumann
,
N.
Esser
,
Z.
Galazka
,
A.
Gottwald
,
J.
Nixdorf
,
R.
Goldhahn
, and
M.
Feneberg
,
New J. Phys.
20
,
053016
(
2018
).
55.
R.
Gonzalez
,
R.
Zallen
, and
H.
Berger
,
Phys. Rev. B
55
,
7014
(
1997
).
56.
T. S.
Krasienapibal
,
T.
Fukumura
,
Y.
Hirose
, and
T.
Hasegawa
,
Jpn. J. Appl. Phys.
53
,
090305
(
2014
).
57.
C.
Fonstad
and
R.
Rediker
,
J. Appl. Phys.
42
,
2911
(
1971
).
58.
Y.
Hosogi
,
Y.
Shimodaira
,
H.
Kato
,
H.
Kobayashi
, and
A.
Kudo
,
Chem. Mater.
20
,
1299
(
2008
).
59.
V. K.
Sangwan
and
M. C.
Hersam
,
Annu. Rev. Phys. Chem.
69
,
299
(
2018
).
60.
D. O.
Scanlon
and
G. W.
Watson
,
J. Mater. Chem.
22
,
25236
(
2012
).
61.
A. B.
Mei
,
L.
Miao
,
M. J.
Wahila
, et al.
Phys. Rev. Mater.
3
,
105202
(
2019
).
You do not currently have access to this content.